• Submit questions 1, 2(a), and 4 for grading.
• **Due on:** Monday 05-20-2019.
• You will have a quiz from the following questions on the due date.

(1) Write the following system of linear equations as an equation for a single function \(f : \mathbb{R}^n \to \mathbb{R}^m \) for appropriate choices of \(m, n \in \mathbb{Z}_+ \),
\[
\begin{align*}
x + 2y - 3z &= 4 \\
x + 3y + z &= 11 \\
2x + 5y - 4z &= 0 \\
x + y + z &= 22
\end{align*}
\]

(2) Solve the following equations for \(z \) a complex number:
(a) \(z^3 - 4i = 0 \).
(b) \(z^6 + 8 = 0 \).

(3) Find \(r > 0 \) and \(\theta \in [0, 2\pi) \) such that \((1 - i)/\sqrt{2} = re^{i\theta} \).

(4) Show that for any \(z \in \mathbb{C} \)
(a) \(z\overline{z} = |z|^2 \).
(b) \(\text{Re}z \leq |z| \) and \(\text{Im}z \leq |z| \).
then use them to prove the triangle inequality
\[|z_1 + z_2| \leq |z_1| + |z_2|, \text{ for all } z_1, z_2 \in \mathbb{C}.
\]

(5) Let \(z, w \in \mathbb{C} \). Prove the parallelogram law
\[|z - w|^2 + |z + w|^2 = 2(|z|^2 + |w|^2)\]

(6) Read Section 2.3.4 then prove Theorem 2.3.5: parts (1) and (2).

(7) Compute the real and the imaginary parts of \(e^z \) for \(z \in \mathbb{C} \).

(8) Given any complex number \(\alpha \in \mathbb{C} \), show that the coefficient of the polynomial
\[(z - \alpha)(z - \overline{\alpha})
\]
are real numbers.

(9) Let \(z, w \in \mathbb{C} \) with \(\overline{z}w \neq 1 \) such that either \(|z| = 1 \) or \(|w| = 1 \). Prove that
\[
\left| \frac{z - w}{1 - \overline{z}w} \right| = 1
\]

(10) Given a polynomial \(p(z) = a_n z^n + \ldots + a_1 z + a_0 \) with complex coefficients, define the **conjugate** of \(p(z) \) to be the new polynomial
\[
\overline{p}(z) = \overline{a_n} z^n + \ldots + \overline{a_1} z + \overline{a_0}.
\]
(a) Prove that \(\overline{p(\overline{z})} = \overline{p(z)} \).
(b) Prove that \(p(z) \) has real coefficient if and only if \(\overline{p(z)} = p(z) \).
(c) Given polynomials \(p(z), q(z), \) and \(r(z) \) such that \(p(z) = q(z)r(z) \), prove that \(\overline{p(z)} = \overline{q(z)}\overline{r(z)} \).