Quenched correlations in disordered harmonic oscillator systems

Houssam Abdul-Rahman
University of Arizona

Based on a joint work with R. Sims, and G. Stolz.

Great Lakes Mathematical Physics 2017

June 23, 2017
The Harmonic Oscillators

The Hamiltonian

\[H_{\Lambda} = \sum_{x \in \Lambda} (p_x^2 + k_x q_x^2) + \sum_{\{x, y\} \subset \Lambda, |x - y| = 1} \lambda(q_x - q_y)^2 \]

- \(\Lambda := ([a_1, b_1] \times \ldots \times [a_d, b_d]) \cap \mathbb{Z}^d \) for integers \(a_j < b_j \) for all \(j \), and \(d \geq 1 \).
- For each \(x \in \Lambda \), \(q_x \) and \(p_x = -i \frac{\partial}{\partial q_x} \) are the position and momentum operators.
- The Hilbert space \(\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{L}^2(\mathbb{R}) = \mathcal{L}^2(\mathbb{R}^\Lambda) \).
- \(\lambda \in (0, \infty) \) is the coupling parameter.
- \(\{k_x\}_x \) are i.i.d. random variables with absolutely continuous distribution given by a bounded density \(\nu \) supported in \([0, k_{\text{max}}]\).
Correlations of the Harmonic Oscillators
Known Results and the New Contribution

Known: Exponential decay of the position-momentum correlations at the:
- ground state
- thermal states.

Nachtergaele-Sims-Stolz (2012).

New Results:
1. Correlations at the energy eigenstates.
2. Correlations after a quantum quench.
Diagonalizing H_Λ

- Define the *annihilation* and *creation* operators

\[a_x = \frac{1}{\sqrt{2}}(q_x + ip_x), \quad a_x^* = \frac{1}{\sqrt{2}}(q_x - ip_x), \quad \text{for} \; x \in \Lambda. \]

They satisfy the *Canonical Commutations Relations (CCR)*

\[[a_x, a_y] = [a_x^*, a_y^*] = 0, \quad \text{and} \quad [a_x, a_y^*] = \delta_{x,y} 1, \quad \text{for all} \; x, y \in \Lambda. \]

- The harmonic Hamiltonian can be written as

\[H_\Lambda = \frac{1}{2} \left(a^T \quad (a^*)^T \right) \begin{pmatrix} h_\Lambda - 1 & h_\Lambda + 1 \\ h_\Lambda + 1 & h_\Lambda - 1 \end{pmatrix} \begin{pmatrix} a \\ a^* \end{pmatrix}. \]

- h_Λ is the finite volume Anderson model on $\ell^2(\Lambda)$, i.e.,

\[h_\Lambda = \lambda h_{0,\Lambda} + k \]

where $h_{0,\Lambda}$ is the discrete Laplacian operator, and

\[k := \text{diag}\{k_x, \; x \in \Lambda\}. \]
Diagonalizing H_Λ

- $\sigma(h_\Lambda) \subset \left[\min_{x \in \Lambda} k_x, 4d\lambda + k_{\max} \right]$.
- h_Λ is diagonalizable in terms of an orthogonal matrix O and a diagonal operator $\gamma^2 = \text{diag}\{\gamma^2_x, x \in \Lambda\}$, i.e., $h_\Lambda = O\gamma^2 O^T$.
- Define the bosons $\{b_k, k = 1, \ldots, |\Lambda|\}$ using the Bogoliubov transformation

$$b = U a + V a^*$$

where

$$U = \frac{1}{2}(\gamma \frac{1}{2} + \gamma^{-\frac{1}{2}})O^T, \quad V = \frac{1}{2}(\gamma \frac{1}{2} - \gamma^{-\frac{1}{2}})O^T.$$

- H_Λ can be written as a free boson system

$$H_\Lambda = \sum_{k=1}^{\mid\Lambda\mid} \gamma_k (2b_k^*b_k + \mathbb{1})$$
A free boson system

\[H_{\Lambda} = \sum_{k=1}^{|\Lambda|} \gamma_k (2b^*_k b_k + 1) \] ← Free boson system.

- The operators \(b_k \) satisfy the CCR
- \(\{\gamma_k > 0, k = 1, \ldots, |\Lambda|\} \) are the eigenvalues of \(h_{\Lambda}^{\frac{1}{2}} \).
- The eigen-pair of \(H_{\Lambda} \) associated with \(\alpha = (\alpha_1, \ldots, \alpha_{|\Lambda|}) \in \mathbb{N}_0^{\Lambda} \) is \((\psi_\alpha, E_\alpha)\),

\[
\psi_\alpha = \prod_{j=1}^{\Lambda} \frac{1}{\sqrt{\alpha_j}!} (b_j^*)^{\alpha_j} |\text{vac}_b\rangle, \quad E_\alpha = \sum_{j=1}^{\Lambda} (2\alpha_j + 1) \gamma_j
\]
The Harmonic Oscillators

The Eigencorrelator Localization

Assumption: The eigencorrelator localization

There exist constants $C < \infty$ and $\eta > 0$ and $0 < s \leq 1$, independent of Λ, such that

$$
\mathbb{E} \left(\sup_{|g| \leq 1} |\langle \delta_x, h^{-\frac{1}{2}} \Lambda g(h) \delta_y \rangle|^s \right) < Ce^{-\eta|x-y|},
$$

for all $x, y \in \Lambda$.

Satisfied for

- $d \geq 1$: large disordered case with $s = 1$.
- $d = 1$: any distribution density ν with $s = \frac{1}{2}$.
The Harmonic Oscillators

Correlation Matrix

- For any observable A and state ρ, $\langle A \rangle_\rho := \text{Tr}[A \rho]$.
- The position-position dynamical correlation at state ρ is
 \[\langle \tau_t(p_x)p_y \rangle_\rho - \langle \tau_t(p_x) \rangle_\rho \langle p_y \rangle_\rho, \quad x, y \in \Lambda. \]
- $\tau_t(q_x) = e^{itH_\Lambda} q_x e^{-itH_\Lambda}$.
- We will consider states ρ such that $\langle \tau_t(p_x) \rangle_\rho = \langle \tau_t(q_x) \rangle_\rho = 0$ for all $x \in \Lambda$ and $t \geq 0$.
- Define the positions-momenta correlation matrix
 \[\Gamma_\rho(t) := \begin{pmatrix} \langle \tau_t(q)q^T \rangle_\rho & \langle \tau_t(q)p^T \rangle_\rho \\ \langle \tau_t(p)q^T \rangle_\rho & \langle \tau_t(p)p^T \rangle_\rho \end{pmatrix} \]
- Let
 \[(\Gamma_\rho(t))_{xy} = \begin{pmatrix} \langle \tau_t(q_x)q_y \rangle_\rho & \langle \tau_t(q_x)p_y \rangle_\rho \\ \langle \tau_t(p_x)q_y \rangle_\rho & \langle \tau_t(p_x)p_y \rangle_\rho \end{pmatrix} \]
Eigenstates Correlations

Recall

The eigencorrelator localization assumption: There exist constants $C < \infty$ and $\eta > 0$ and $0 < s \leq 1$, independent of Λ, such that

$$\mathbb{E} \left(\sup_{|g| \leq 1} |\langle \delta_x, h^{-\frac{1}{2}}g(h)\delta_y \rangle|^s \right) < C e^{-\eta|x-y|}, \text{ for all } x, y \in \Lambda. \quad (1)$$

Theorem

Under the eigencorrelator localization assumption (above),

$$\mathbb{E} \left(\sup_t \| (\Gamma_{\rho_\alpha}(t))_{xy} \|^s \right) \leq C C' (1 + \|\alpha\|_{\infty})^{1+s} e^{-\eta|x-y|}$$

for all finite rectangular boxes $\Lambda \subset \mathbb{Z}^d$, $x, y \in \Lambda$ and $\alpha \in \mathbb{N}_0^{\Lambda}$. Here C, η and s are as in (1) and $C' < \infty$ depends on d, λ, s and k_{max}, but is independent of Λ.
Decompose Λ into M disjoint rectangular sub-boxes, $\Lambda = \bigcup_{\ell=1}^{M} \Lambda_\ell$.

For each ℓ, let H_{Λ_ℓ} be the restriction of H_Λ to Λ_ℓ.

Let $H_{0,\Lambda}$ be the Hamiltonian of the non-interacting system on \mathcal{H}_Λ,

$$H_{0, \Lambda} = \sum_{\ell=1}^{M} H_{\Lambda_\ell} \otimes 1_{\Lambda \setminus \Lambda_\ell}.$$

Let $\{\rho_\ell, \ell = 1, \ldots, M\}$ be states acting on $L^2(\mathbb{R}^{\Lambda_\ell})$, and let

$$\rho := \bigotimes_{\ell=1}^{M} \rho_\ell.$$

We study the positions-momenta correlations at the state

$$\rho_t = e^{-itH_\Lambda} \rho e^{itH_\Lambda}.$$
Recall that $\rho_t = e^{-itH_\Lambda} \left(\bigotimes_{\ell=1}^{M} \rho_\ell \right) e^{itH_\Lambda}$.

For every $x, y \in \Lambda$, let

$$(\Gamma_{\rho_t})_{xy} := (\Gamma_{\rho_t(0)})_{xy} = \begin{pmatrix} \langle q_x q_y \rangle_{\rho_t} & \langle q_x p_y \rangle_{\rho_t} \\ \langle p_x q_y \rangle_{\rho_t} & \langle p_x p_y \rangle_{\rho_t} \end{pmatrix}$$

For all $x, y \in \Lambda_\ell$

$$(\Gamma_{\rho_\ell})_{x,y} := (\Gamma_{\rho_\ell(0)})_{xy} = \begin{pmatrix} \langle q_x q_y \rangle_{\rho_\ell} & \langle q_x p_y \rangle_{\rho_\ell} \\ \langle p_x q_y \rangle_{\rho_\ell} & \langle p_x p_y \rangle_{\rho_\ell} \end{pmatrix}$$
Recall: The Eigencorrelator Localization Assumption,
\[
\mathbb{E} \left(\sup_{|g| \leq 1} |\langle \delta_x, h^{-\frac{1}{2}} g(h) \delta_y \rangle|^s \right) < C e^{-\eta|x-y|}, \text{ for all } x, y \in \Lambda.
\]
(2)

Theorem

Under the assumption given above. Suppose that, for some \(C' < \infty \), and \(\eta' > 0 \),
\[
\mathbb{E} \left(\| (\Gamma_{\rho_{\ell}})_{xy} \|^s \right) \leq C' e^{-\eta'|x-y|}
\]
(3)

for all \(\ell \) and all \(x, y \in \Lambda_{\ell} \), where \(0 < s \leq 1 \) is as in (2).

Then, for \(\eta \) from (2), \(\tilde{\eta} := \frac{1}{6} \min\{\eta, \eta'\} \) and \(\rho = \bigotimes_{\ell} \rho_{\ell} \), there exists a constant \(C''' < \infty \) such that
\[
\mathbb{E} \left(\sup_{t \in \mathbb{R}} \| (\Gamma_{\rho_t})_{xy} \|^s \right) \leq (C')^{1/3} C''' e^{-\tilde{\eta}|x-y|}
\]

for all \(x, y \in \Lambda \). Here \(C' \) is the constant from (3) and \(C''' \) depends on \(d, \lambda, s, k_{\max} \) and \(\tilde{\eta} \), but is independent of \(\Lambda \) and the number of subregions \(M \).
Correlations After a Quantum Quench

Thermal States Correlations

Thermal States:

\[\rho_\beta = \frac{e^{-\beta H_\Lambda}}{\text{Tr}[e^{-\beta H_\Lambda}]}, \text{ for } \beta \in (0, \infty). \]

Theorem

For a rectangular box \(\Lambda \subset \mathbb{Z}^d \) and \(\beta \in (0, \infty) \), let \(\Gamma_{\rho_\beta} = \Gamma_{\rho_\beta}(0) \) their static position-momentum correlation matrices.

There exist \(C < \infty \) and \(\mu > 0 \), dependent on \(d, \lambda \) and the distribution of the random variables \(k_x \), but independent of \(\Lambda \) and \(\beta \), such that

\[\mathbb{E} \left(\| (\Gamma_{\rho_\beta})_{xy} \|^{\frac{1}{2}} \right) \leq C \max \left\{ 1, \frac{1}{\beta} \right\} e^{-\mu |x-y|} \]

for all \(x, y \in \Lambda \).
Consider the thermal states of H_{Λ_ℓ} with inverse temperatures β_ℓ, $\ell = 1, \ldots, M$, i.e.,

$$
\rho_{\ell, \beta_\ell} = \frac{e^{-\beta_\ell H_{\Lambda_\ell}}}{\text{Tr}[e^{-\beta_\ell H_{\Lambda_\ell}}]}.
$$

The product state

$$
\rho_{\beta_1, \ldots, \beta_M} := \bigotimes_{\ell=1}^M \rho_{\ell, \beta_\ell}.
$$

The Schrödinger evolution

$$
(rho_{beta_1, \ldots, beta_M})_t = e^{-itH_{\Lambda}}(rho_{beta_1, \ldots, beta_M})e^{itH_{\Lambda}}.
$$

We assume the eigencorrelator localization with $s = 1/2$.

Result:

$$
\mathbb{E} \left(\sup_t \| (\Gamma(rho_{beta_1, \ldots, beta_M})_t)_{xy} \|^2 \right)^{1/6} \leq C' \max \left\{ 1, \beta^{-1/3} \right\} e^{-\tilde{\eta}|x-y|}
$$
Correlations After a Quantum Quench

Corollaries: Energy Eigenstates

For $\ell = 1, \ldots, M$, let $\alpha_\ell \in \mathbb{N}_{0}^{\Lambda_\ell}$, and ρ_{α_ℓ} be the corresponding “local” eigenstate of H_{Λ_ℓ}.

Let N be the highest mode, $\|\alpha_\ell\|_\infty \leq N$ for all $\ell = 1, \ldots, M$.

The product state

$$\rho_{\alpha} = \bigotimes_{\ell=1}^{M} \rho_{\alpha_\ell}.$$

The time evolution

$$(\rho_{\alpha})_t := e^{-itH_{\Lambda}} \rho_{\alpha} e^{itH_{\Lambda}}.$$

We assume the eigencorrorralator localization with $s = \frac{1}{2}$.

Result:

$$\mathbb{E} \left(\sup_t \| (\Gamma_{(\rho_{\alpha})_t})_{xy} \|_{\frac{1}{6}} \right) \leq \tilde{C} (1 + N)^{\frac{1}{2}} e^{-\frac{n}{6} |x-y|}$$

for all $x, y \in \Lambda$.

Houssam Abdul-Rahman 15 / 18
Correlations After a Quantum Quench

Corollaries: Eigenstates-Thermal states

- Fix $\beta > 0$ and $N < \infty$.
- Consider the local states ρ_ℓ, $\ell = 1, \ldots, M$, where each ρ_ℓ is one of the following:
 - a thermal state with inverse temperature $\beta_\ell \in (\beta, \infty)$.
 - an eigenstate with occupation number vector α_ℓ with $\|\alpha_\ell\|_\infty \leq N$.
- Let $\rho = \bigotimes_{\ell=1}^{M} \rho_\ell$ and $\rho_t = e^{-itH_\Lambda} \left(\bigotimes_{\ell=1}^{M} \rho_\ell \right) e^{-itH_\Lambda}$.
- We assume the eigencorrelator localization with $s = 1/2$.

Result:

\[
\mathbb{E} \left(\sup_t \| (\Gamma_{\rho_t})_{xy} \|^{\frac{1}{6}} \right) \leq C \max \left\{ (1 + N)^{\frac{3}{2}}, \frac{1}{\beta} \right\}^{\frac{1}{3}} e^{-\tilde{\eta}|x-y|}
\]

for all $x, y \in \Lambda$.
Correlations After a Quantum Quench

Corollaries: \#decompositions = The Volume of the system

- If the $M = |\Lambda|$.
- $\{H\{x\}, x \in \Lambda\}$ with $H\{x\} = p_x^2 + k_x q_x^2$.
- Let $\{n_x, x \in \Lambda\}$ be the set of occupation numbers in sites $x \in \Lambda$.
- Let $N = \max_x n_x$, i.e., the maximum occupation number.
- The eigenstates are

$$\phi_{n_x}(q_x) = \text{Const.} \cdot H_{n_x}(\sqrt[k_x]{q_x})e^{-\frac{\sqrt{k_x}}{2}q_x^2}, \text{ for } x \in \Lambda.$$

- Let $\rho = \bigotimes_{x \in \Lambda} \rho_x$ and $\rho_t = e^{-itH_{\Lambda}} \left(\bigotimes_{x \in \Lambda} \rho_x \right) e^{itH_{\Lambda}}$.
- We assume eigencorrelator localization with $s = 1/2$.

Result:

$$\mathbb{E} \left(\sup_t \| (\Gamma_{\rho_t})_{xy} \|^{\frac{1}{6}} \right) \leq C(1 + 2N)^{\frac{1}{6}} e^{-\frac{n}{6}|x-y|}$$

for all $x, y \in \Lambda$.
Thank you.