## Problem 1

This is a linear 1st order ODE, so we seek an integrating factor. For a linear equation $y^{\prime}+q(x) y=$ $g(x)$, the integrating factor is $\mu(x)=\exp \left(\int q(t) d t\right)$, so we compute:

$$
\mu(x)=\exp \left(\int 4 d t\right)=e^{4 x}
$$

Multiplying both sides of the equation by $\mu$, we get:

$$
\begin{array}{rlrl} 
& & e^{4 x} y^{\prime}+4 e^{4 x} y & =x e^{5 x} \\
\Longrightarrow \quad \frac{d}{d x}\left(e^{4 x} y\right) & =x e^{5 x} \\
\Longrightarrow \quad e^{4 x} y & =\int x e^{5 x} d x+c \\
\Longrightarrow \quad & e^{4 x} y & =\frac{e^{5 x}(5 x-1)}{25}+c \\
& \Longrightarrow \quad y & =\frac{e^{x}(5 x-1)}{25}+c e^{-4 x}
\end{array}
$$

This is the general solution. To find the particular solution satisfying $y(0)=1$, we plug in and solve for $c$ :

$$
\begin{aligned}
1 & =y(0) \\
& =\frac{e^{0}(-1)}{25}+c e^{0} \\
& =\frac{-1}{25}+c,
\end{aligned}
$$

so $c=1+\frac{1}{25}=\frac{26}{25}$. Thus the final solution is:

$$
y=\frac{e^{x}(5 x-1)}{25}+\frac{26}{25} e^{-4 x}
$$

