
The equation is presented as if it were exact, or could be made to be exact.
We proceed under this assumption, and set N(x, y) = xy + 1 and M(x, y) =
y(x + y). We could check to see if the equation is already exact by testing
whether My is equal to Nx (and in fact it is not), but the question gives us a
hint that that is unnecessary by stating that an integrating factor of the form
µ = µ(y) exists.

We can calculate what this integrating factor would have to be by mim-
icking the book in Chapter 2.6, where the authors go over integrating factors
that depend on x. If an integrating factor µ(y) existed, then after multiplying
our equation by µ(y) the equation would be exact. That means that our new
equation would be

µ(y)M(x, y) + µ(y)N(x, y)y′ = 0,

and
(µ(y)M(x, y))y = (µ(y)N(x, y))x

by exactness. Expanding that last equation, we get

dµ(y)

dy
M + µ(y)

∂M

∂y
= µ(y)

∂N

∂x
.

One final rearrangement yields

dµ

dy
=

(

Nx −My

M

)

µ(y).

If we let Q = (Nx −My)/M then

Q =
Nx −My

M
=
y − (x+ 2y)

y(x+ y)
=

−1

y
.

This means that Q is a function of y alone, and

dµ

dy
=

(

Nx −My

M

)

µ(y) = Q(y)µ(y) = (−1/y)µ(y)

from our earlier equation. This is a first order linear differential equation, so we
can use integrating factors to get that

µ(y) = e
∫
Q(y) dy = A/y

for some constant A. We’re only trying to find one integrating factor, so we can
set A = 1 for convenience and have µ(y) = 1/y.

Another valid way to find the integrating factor is simply to use the formula
presented in the textbook for the integrating factor. The result is the same. It
should be pointed out that a lot of people tried to use an incorrect formula for
µ(y) and wrote that

µ(y) =
Nx −My

M
=

−1

y
.
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This formula will not work in general, but it did (coincidentally) give a valid
integrating factor in this problem.

Now that we have the integrating factor we can multiply through the differ-
ential equation by µ(y) and get

x+ y + (x+ 1/y)y′ = 0.

If we wanted we could test this equation to make sure it is exact as a check on
our work. Since it is exact, there must be a function ψ(x, y) satisfying

ψx = x+ y

and
ψy = x+ 1/y

whose level curves are the solutions to the differential equation. Integrating
both sides of the first equation by x we get

ψ(x, y) =

∫

x+ y dx+ h(y) =
x2

2
+ xy + h(y)

for some unknown function h depending only on y. Using the second equation
we see that

x+ h′(y) = ψy = x+ 1/y,

so
h′(y) = 1/y,

and consequently h(y) = log(|y|) + C for some constant C. Since we only care
about ψ up to a constant we can set C = 0. So

ψ(x, y) =
x2

2
+ xy + log(|y|)

is a function whose level curves ψ(x, y(x)) = C are the solutions of the differ-
ential equation (given implicitly). This is the general solution, and since there
is no obvious way to solve for y in terms of x we leave it in implicit form.

Since we are given an initial condition y(0) = e we know that for that
particular solution,

C = ψ(0, y(0)) = ψ(0, e) =
02

2
+ (0)e+ log(|e|) = 1.

So the solution satisfying the initial condition y(0) = e is given implicitly by

1 =
x2

2
+ xy + log(|y|).

If we notice that y can never be zero (otherwise the logarithm would be unde-
fined) and y(0) = e is positive, we can say that

1 =
x2

2
+ xy + log(y)

on the solution interval that contains 0.
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