Problem 3

Consider the following Bernouilli's problem

$$
\left\{\begin{align*}
y^{\prime}+y & =r(x) y^{2} \tag{1}\\
y(0) & =1
\end{align*} \quad \text { where } \quad r(x)= \begin{cases}1, & \text { if } x \leq 1 \\
0, & \text { if } x>1\end{cases}\right.
$$

1. Find a solution for $x \leq 1$.
2. Assuming that the solution is continuous at $x=1$, use the result of part 1 to find the solution to the problem for $x>1$.

Solution

1. On $x \leq 1$ the IVP is

$$
\left\{\begin{align*}
y^{\prime}+y & =y^{2} \tag{2}\\
y(0) & =1
\end{align*}\right.
$$

Use the Bernouilli substitution $u=y^{-1}$ to reduce the nonlinear differential equation to a linear one: divide through by $-y^{2}$ and substitute $u^{\prime}=$ $-y^{-2} y^{\prime}$ to get

$$
-y^{\prime} y^{-2}-y^{-1}=-1
$$

$$
\Longleftrightarrow \quad u^{\prime}-u=-1
$$

Thus the IVP becomes

$$
\left\{\begin{align*}
u^{\prime}-u & =-1 \tag{3}\\
u(0) & =1
\end{align*}\right.
$$

This is an equation we know how to solve. You may use the "integrating factor" method, or the "variation of parameter method." I will solve it using the variation of parameter method.

- solutions of the associated homogeneous differential equation $u^{\prime}-u=$ 0 are of the form $u(x)=a e^{x}$ for $a=$ a real number
- vary the parameter $a=a(x)$, and work backwards: assume $a e^{x}$ satisfies the given inhomogeneous differential equation

$$
\begin{aligned}
-1 & =\left(a e^{x}\right)^{\prime}-\left(a e^{x}\right) \\
& =a^{\prime} e^{x}+a e^{x}-a e^{x} \\
& =a^{\prime} e^{x}
\end{aligned}
$$

getting a differential equation for a

- rearrange it and integrate to solve for a :

$$
\begin{array}{rlrl}
a^{\prime} & =-e^{-x} \\
\Rightarrow & & \int a^{\prime} \mathrm{d} x & =\int-e^{-x} \mathrm{~d} x \\
\Rightarrow & a & =e^{-x}+c
\end{array}
$$

where $c=$ a constant (byproduct of integration)

- thus

$$
u(x)=a e^{x}=\left(e^{-x}+c\right) e^{x}=1+c e^{x}
$$

is a solution of (3) iff c satisfies the initial condition

- solve for the c that does: $1=u(0)=1+c e^{0}=1+c$ forcing $c=0$ and $u(x)=1$

Conclude $y(x)=u(x)^{-1}=1$ also.
2. The solution to the two-piece discontinuous IVP (1) is also made up of two pieces! Each piece is the solution to an IVP. We just found the $x \leq 1$ piece by solving the IVP (2). What IVP should we solve to find the $x>1$ piece? Well we know what the differential equation is on $x>1$. But, what should the initial condition be? The assumption that the two-piece solution should be continuous at $x=1$ forces us to put the initial condition $y(1)=1$. That is, the $x>1$ piece of the continuous solution we seek is the solution to the the IVP

$$
\left\{\begin{array}{r}
y^{\prime}+y=0 \tag{4}\\
y(1)=1
\end{array}\right.
$$

The equation $y^{\prime}+y=0$ requires no special methods. Just rearrange and integrate to find $y=c e^{-x}$. Solve for c by plugging in the initial condition $1=y(1)=c e^{-1}$ forcing $c=e$.

$$
y(x)= \begin{cases}1, & \text { if } x \leq 1 \tag{5}\\ e^{-x+1}, & \text { if } x>1\end{cases}
$$

