MAT244H1F1: Introduction to Ordinary Differential Equations

First Midterm, Question 4 Solution

Problem 1 Consider the equation $y^{\prime}=y-y^{3}$.

1. Find all equilibria of the equation.
2. Draw the phase line and determine the stability of each equilibrium.
3. Sketch in the xy-plane the graph of solutions satisfying conditions $y(0)=$ $2, y(0)=-2$ and $y(0)=\frac{3}{4}$.
To find the equilibrium points we equate the derivative with 0 and solve, in this case we have

$$
0=y-y^{3}=y\left(1-y^{2}\right)=y(1-y)(1+y)
$$

and hence the equilibrium points are 0,1 and -1 .
To determine the stability we study the sign of the derivative in the regions around the equilibrium points, that is, in the intervals $(-\infty,-1),(-1,0),(0,1)$ and $(1, \infty)$. We recall that the sign of the derivative is constant in each of these intervals. We have the following table

$$
\begin{array}{ccccc}
& y & 1-y & 1+y & y-y^{3} \\
(-\infty,-1) & - & + & - & + \\
(-1,0) & - & + & + & - \\
(0,1) & + & + & + & + \\
(1, \infty) & + & - & + & -
\end{array}
$$

In this table $\mathrm{a}+$ sign means that term is positive and $-\operatorname{sign}$ means it is negative. From we know that solutions approach -1 and 1 and move away from 0 , hence 1 and -1 are stable and 0 is unstable. We deduce that the phase line looks like

Finally we show the solutions to these equations (together with another solution starting at point $y(0)=-\frac{3}{4}$):

