MAT244H1F1: INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

SECOND MIDTERM SOLUTIONS

Problem 1. Solve the initial value problem

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime}-6 y & =6 \\
y(0) & =1, \\
y^{\prime}(0) & =1 .
\end{aligned}
$$

Solution: The homogeneous linear equation is $y^{\prime \prime}-y^{\prime}-6 y=0$ which has characteristic equation $r^{2}-r-6=0$. We can factor this as $(r-3)(r+2)=0$, and so we find that two generating solutions are $y(t)=e^{3 t}$ and $y(t)=e^{-2 t}$. Hence all solutions to this equation are of the form

$$
y(t)=A e^{3 t}+B e^{-2 t}
$$

for some constants A and B. Moreover, it is clear that a particular solution to $y^{\prime \prime}-y^{\prime}-6 y=6$ is the constant solution $y(t)=-1$, from where we deduce all solutions to this equation are of the form

$$
y(t)=A e^{3 t}+B e^{-2 t}-1
$$

Notice that the constant solution $y(t)=-1$ can be obtained by the method of undetermined coefficients since 0 is not a root of the characteristic polynomial and the right hand side is a constant.

Differentiating the general solution we find

$$
y^{\prime}(t)=3 A e^{3 t}-2 B e^{-2 t}
$$

Using the initial conditions we obtain a linear system in A and B :

$$
\begin{array}{r}
A+B-1=1 \\
3 A-2 B=1
\end{array}
$$

which has a unique solution $A=1$ and $B=1$. In conclusion, the solution we look for is

$$
y(t)=e^{3 t}+e^{-2 t}-1
$$

Problem 2. (a): Find a solution of the equation

$$
x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0 .
$$

of the form $y=a x+b$, where a and b are constants.
(b): Find the general solution of the equation

$$
x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=2 x^{3} e^{2 x} .
$$

Solution: By substituting directly we find

$$
0=-x(x+2) a+(x+2)(a x+b)=(x+2)(a x+b-a x)=b(x+2)
$$

from where we conclude $b=0$ and there is no restriction in a. For example, $y_{1}(x)=x$ is one such solution.

To find another solution we use D'Alambert's method: write $y(x)=u(x) x$ and notice that

$$
\begin{aligned}
y^{\prime} & =u^{\prime} x+u \\
y^{\prime \prime} & =u^{\prime \prime} x+2 u^{\prime}
\end{aligned}
$$

We substitute into the equation to find the equation u needs to satisfy:

$$
\begin{aligned}
0 & =x^{2}\left(u^{\prime \prime} x+2 u^{\prime}\right)-x(x+2)\left(u^{\prime} x+u\right)+(x+2) u x \\
& =u^{\prime \prime} x^{3}+2 u^{\prime} x^{2}-u^{\prime} x^{3}-2 u^{\prime} x^{2} \\
& =\left(u^{\prime \prime}-u^{\prime}\right) x^{3}
\end{aligned}
$$

from where we deduce u must satisfy $u^{\prime \prime}=u^{\prime}$, which is satisfied, for example, by $u(x)=e^{x}$. Hence $y_{2}(x)=x e^{x}$ is another solution. The Wronskian of y_{1}, y_{2} is:

$$
x(x+1) e^{x}-x e^{x}=x^{2} e^{x} \neq 0
$$

and so they are a fundamental pair of solutions. Further, write the non-homogeneous equation as

$$
y^{\prime \prime}-\frac{(x+2)}{x} y^{\prime}+\frac{(x+2)}{x^{2}} y=2 x e^{2 x}
$$

and apply the variation of parameters formula to obtain the general solution:

$$
\begin{aligned}
Y(x) & =-x \int \frac{\left(x e^{x}\right)\left(2 x e^{2 x}\right)}{x^{2} e^{x}} \mathrm{~d} x+x e^{x} \int \frac{(x)\left(2 x e^{2 x}\right)}{x^{2} e^{x}} \mathrm{~d} x= \\
& =-x \int 2 e^{2 x} \mathrm{~d} x+x e^{x} \int 2 e^{x} \mathrm{~d} x= \\
& =-x e^{2 x}+A x+2 x e^{2 x}+B x e^{x}=x e^{2 x}+A x+B x e^{x}
\end{aligned}
$$

Problem 3. (a): Find the general solution of

$$
y^{(6)}-y^{(2)}=0
$$

(b): Find the general solution of

$$
y^{(6)}-y^{(2)}=x
$$

Solution: The characteristic equation of the homogeneous problem is $r^{6}-r^{2}=$ 0 . This factors as

$$
r^{2}(r-1)(r+1)(r+i)(r-i)=0
$$

from where we deduce the solutions 1 and x (corresponding to the repeated root 0), e^{x}, e^{-x} (corresponding to the roots 1 and -1), and $\cos (x), \sin (x)$ (corresponding to the complex conjugate roots i and $-i$). Hence the general solution is of the form

$$
y(x)=A+B x+C e^{x}+D e^{-x}+E \cos (x)+F \sin (x)
$$

To find a particular solution we notice that 0 is a double root and so there is double resonance from where we deduce there must be a solution of the form

$$
y(x)=(\alpha+\beta x) x^{2}=\alpha x^{2}+\beta x^{3}
$$

Notice that the sixth derivative of $y(x)$, vanishes, and the second derivative is $y^{\prime \prime}(x)=2 \alpha+6 \beta x$. Hence the equation becomes

$$
-2 \alpha-6 \beta x=x
$$

from where we deduce, comparing coefficients, that $\alpha=0$ and $\beta=\frac{1}{6}$. We conclude a particular solution is $y(x)=-\frac{x^{3}}{6}$ and so the general solution to the non homogeneous equation is

$$
y(x)=A+B x+C e^{x}+D e^{-x}+E \cos (x)+F \sin (x)-\frac{x^{3}}{6}
$$

where A, B, C, D, E, F are constants.

Problem 4. (a): Solve the equation

$$
y^{\prime \prime \prime}+y^{\prime}=\cos (k x)
$$

where k is a constant.
(b): For which values of k does the equation in part (a) has an unbounded solution?

Solution: The characteristic equation of the homogeneous equation is $r^{3}+r=0$ which is factored as $r(r+i)(r-i)=0$. Hence we conclude $1, \sin (x)$, and $\cos (x)$ are solutions of the homogeneous equation and hence the general solution is

$$
y(x)=A+B \cos (x)+C \sin (x)
$$

We will use the method of undetermined coefficients to find a particular solution of this equation. First suppose that $k \neq 0,1,-1$. Since in the right hand side we have $\cos (k x)$, and k is not a root of the characteristic equation, the form of a particular solution is

$$
y(x)=a \cos (k x)+b \sin (k x)
$$

We have

$$
\begin{aligned}
y^{\prime}(x) & =-a k \sin (k x)+b k \cos (k x) \\
y^{\prime \prime}(x) & =-a k^{2} \cos (k x)-b k^{2} \sin (k x) \\
y^{\prime \prime \prime}(x) & =a k^{3} \sin (k x)-b k^{3} \cos (k x)
\end{aligned}
$$

Substituting we have

$$
\begin{aligned}
\cos (k x)=y^{\prime \prime \prime}+y^{\prime} & =a k^{3} \sin (k x)-b k^{3} \cos (k x)-a k \sin (k x)+b k \cos (k x) \\
& =a\left(k^{3}-k\right) \sin (k x)-b\left(k^{3}-k\right) \cos (k x)
\end{aligned}
$$

Hence, since $k^{3}-k \neq 0$, we can take $a=0$ and $b=-\frac{1}{k^{3}-k}$ and obtain as particular solution $y(x)=-\frac{\sin (k x)}{k^{3}-k}$. We conclude the general solution is

$$
y(x)=A+B \cos (x)+C \sin (x)-\frac{\sin (k x)}{k^{3}-k}
$$

Notice that in this case

$$
|y(x)|=\left|A+B \cos (x)+C \sin (x)-\frac{\sin (k x)}{k^{3}-k}\right| \leq|A|+|B|+|C|+\left|\left(k^{3}-k\right)\right|^{-1}
$$

which is bounded.
Three cases remain: $k=0,1,-1$. For the case $k=0$ the right hand side is $\cos (0)=1$ and, since 0 is a simple root of the characteristic equation, we conclude there must be a solution of the form $y(x)=a x$. Substituting we get

$$
1=y^{\prime \prime \prime}+y^{\prime}=0+a
$$

hence $y(x)=x$ is a particular solution and the general solution in this case is

$$
y(x)=A+B \cos (x)+C \sin (x)+x
$$

and this is unbounded.
For $k= \pm 1$ notice that the right hand side is $\cos (\pm x)=\cos (x)$ since $\cos (x)$ is an even function. In this case the particular solution has the form

$$
y(x)=a x \cos (x)+b x \sin (x) .
$$

Notice that

$$
\begin{aligned}
y^{\prime}(x) & =a \cos (x)-a x \sin (x)+b \sin (x)+b x \cos (x), \\
y^{\prime \prime}(x) & =-a \sin (x)-a \sin (x)-a x \cos (x)+b \cos (x)+b \cos (x)-b x \sin (x) \\
& =-2 a \sin (x)+2 b \cos (x)-a x \cos (x)-b x \sin (x) \\
y^{\prime \prime \prime}(x) & =-2 a \cos (x)-2 b \sin (x)-a \cos (x)+a x \sin (x)-b \sin (x)-b x \cos (x) \\
& =-3 a \cos (x)-3 b \sin (x)+a x \sin (x)-b x \cos (x) .
\end{aligned}
$$

Hence, when we substitute,

$$
\begin{aligned}
\cos (x) & =y^{\prime \prime \prime}(x)+y^{\prime}(x) \\
& =-3 a \cos (x)-3 b \sin (x)+a x \sin (x) \\
& -b x \cos (x)+a \cos (x)-a x \sin (x)+b \sin (x)+b x \cos (x) \\
& =-2 a \cos (x)-2 b \sin (x),
\end{aligned}
$$

from where we conclude $a=-\frac{1}{2}$ and $b=0$. In other words a particular solution is $y(x)=-\frac{x \cos (x)}{2}$, and so the general solution is

$$
y(x)=A+B \cos (x)+C \sin (x)-\frac{x \cos (x)}{2}
$$

which again is unbounded.
In conclusion, the general solutions are

$$
y(x)=A+B \cos (x)+C \sin (x)-\frac{\sin (k x)}{k^{3}-k}, k \neq 0,1,-1,
$$

and

$$
y(x)=A+B \cos (x)+C \sin (x)+x, k=0,
$$

and

$$
y(x)=A+B \cos (x)+C \sin (x)-\frac{x \cos (x)}{2}, k= \pm 1
$$

and there are unbounded solutions only when $k=0,1,-1$.

