MAT337H1, Introduction to Real Analysis: solution to Exercise H from Section 5.3

We need to show that h(x) is continuous at every point $x_0 \in [a, c]$. Notice that if $x_0 < b$, then there is neighborhood of x_0 where h = f, and since f is continuous at x_0 , so is h. (Check that if two functions coincide in a neighborhood of x_0 , and one of them is continuous at x_0 , then the other one is also continuos. This can be reformulated by saying that continuity at a point is a local property, determined only by values of the function near that point.) Analogously, if $x_0 > b$, then there is neighborhood of x_0 where h = g, and since g is continuous at x_0 , so is h. So, it suffices to show that h is continuous at b. Take any $\varepsilon > 0$. Then, since f is continuous at x_0 , there exists $\delta > 0$ such that $|f(x) - f(b)| < \varepsilon$ whenever $|x - b| < \delta$. Furthermore, since g is continuous at b, there exists $\delta' > 0$ such that $|g(x) - g(b)| < \varepsilon$ whenever $|x - b| < \delta'$. Take $\delta'' = \min(\delta, \delta')$. Then, for $|x - b| < \delta''$ we have both $|f(x) - f(b)| < \varepsilon$ and $|g(x) - g(b)| < \varepsilon$. If we further assume that $x \leq b$, we get

$$|h(x) - h(b)| = |f(x) - f(b)| < \varepsilon,$$

while for x > b we have

$$|h(x) - h(x_0)| = |g(x) - g(b)| < \varepsilon$$

So, $|h(x) - h(b)| < \varepsilon$ provided that $|x - b| < \delta''$, and continuity of h at b follows.