MAT337H1, Introduction to Real Analysis: additional recommended problems for Feb 15 class

- 1. In class we proved that if f is a continuous function on [a, b], and ξ is a number such that $f(a) < \xi < f(b)$, then there is $c \in [a, b]$ such that $f(c) = \xi$. We defined c by the formula $c = \sup \{x \in [a, b] \mid f(x) < \xi\}$. Then we showed that $f(c) = \xi$ by considering two cases $f(c) > \xi$ and $f(c) < \xi$ and drawing a contradiction in both cases. However, our argument does not work if c = a in the first case or c = b in the second case. Show that both these situations are in fact impossible.
- 2. Let f be a strictly increasing continous function on [a, b]. Show that f^{-1} is continuous at the endpoints f(a) and f(b) of its domain.
- 3. Let X, Y, Z be arbitrary sets, and let $f: Y \to Z, g: X \to Y$ be bijections. Show that the composition $f \circ g: X \to Z$ is a bijection and that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$ (socks-shoes property).