MAT337H1, Introduction to Real Analysis: additional recommended problems for Feb 15 class

1. In class we proved that if f is a continuous function on $[a, b]$, and ξ is a number such that $f(a)<\xi<f(b)$, then there is $c \in[a, b]$ such that $f(c)=\xi$. We defined c by the formula $c=\sup \{x \in[a, b] \mid f(x)<\xi\}$. Then we showed that $f(c)=\xi$ by considering two cases $f(c)>\xi$ and $f(c)<\xi$ and drawing a contradiction in both cases. However, our argument does not work if $c=a$ in the first case or $c=b$ in the second case. Show that both these situations are in fact impossible.
2. Let f be a strictly increasing continous function on $[a, b]$. Show that f^{-1} is continuous at the endpoints $f(a)$ and $f(b)$ of its domain.
3. Let X, Y, Z be arbitrary sets, and let $f: Y \rightarrow Z, g: X \rightarrow Y$ be bijections. Show that the composition $f \circ g: X \rightarrow Z$ is a bijection and that $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$ (socks-shoes property).
