MAT337H1, Introduction to Real Analysis: solution to Exercise C for Section 5.6 and Problem 1 from additional recommended problems for Feb 15 class

Exercise C for Section 5.6. Show that $2 \sin (x)+3 \cos (x)=x$ has three solutions.
Solution. Consider the function $f(x)=2 \sin (x)+3 \cos (x)-x$. Notice that

$$
f(-\pi)=-3+\pi>0, \quad f\left(-\frac{\pi}{2}\right)=-2+\frac{\pi}{2}<0, \quad f(0)=3>0, \quad f(\pi)=-3-\pi<0
$$

So, the function f changes sign in intervals $\left[-\pi,-\frac{\pi}{2}\right],\left[-\frac{\pi}{2}, 0\right],[0, \pi]$, and hence has at least one zero in each of these intervals. (Here we are using continuity of f and the intermediate value theorem.) But $f(x)=0$ if and only if $2 \sin (x)+3 \cos (x)=x$, so it follows that the latter equation has at least three solutions.

Showing that the our equation has exactly three solutions is more tricky. First, using some trigonometry, we get

$$
2 \sin (x)+3 \cos (x)=\sqrt{15}(\sin (x) \cos (\alpha)+\cos (x) \sin (\alpha))=\sqrt{15} \sin (x+\alpha)
$$

where α is such that $\cos (\alpha)=2 / \sqrt{15}$ and $\sin (\alpha)=3 / \sqrt{15}$. It follows that the left-hand side of our equation is always between $\sqrt{15}$ and $-\sqrt{15}$, which means that all solutions of the equation belong to the interval $[-\sqrt{15}, \sqrt{15}]$. Further, notice that for $x \in\left[\pi, \frac{3 \pi}{2}\right]$ the left-hand side of our equation is non-positive, while the right-hand side is positive, so there are no solutions in this interval. Since $\sqrt{15} \in\left[\pi, \frac{3 \pi}{2}\right]$, it follows that all solutions of our equation in fact lie in the interval $[-\sqrt{15}, \pi]$. Further, if $x \in\left[-\frac{3 \pi}{2},-\pi\right]$, we have $\sin (x) \geq 0$, so $2 \sin (x)+3 \cos (x) \geq-3$. On the other hand, the right-hand side of our equation in this interval is less than -3 . So, there are no solutions in $\left[-\frac{3 \pi}{2},-\pi\right]$ as well, and all solutions lie in $[-\pi, \pi]$.

Now it remains to show that $f(x)$ has at most three zeros in the interval $[-\pi, \pi]$. Using the above computation, we have

$$
f(x)=\sqrt{15} \sin (x+\alpha)-x
$$

so

$$
f^{\prime}(x)=\sqrt{15} \cos (x+\alpha)-1
$$

Notice that the solutions of the equation $f^{\prime}(x)=0$ are of the form $x_{1}+2 \pi k, x_{2}+2 \pi k$. Therefore, $f^{\prime}(x)$ has at most two zeros in $(-\pi, \pi)$. (One zero of the form $x_{1}+2 \pi k$, and one of the form $x_{2}+2 \pi k$. There cannot be two zeros of the same form, because then the distance between them would be at least 2π, so they cannot both lie in $(-\pi, \pi)$.) But then it follows that f has at most three zeros in $[-\pi, \pi]$: if there were four zeros, it would follow by Rolle's theorem that $f^{\prime}(x)$ has at least three zeros in $(-\pi, \pi)$. (An alternative approach not employing Rolle's theorem is to use that f is monotonous in the intervals where f^{\prime} does not change sign, and to use that a strictly monotonous function cannot take the same value twice.)

Problem 1 from additional recommended problems. In class we proved that if f is a continuous function on $[a, b]$, and ξ is a number such that $f(a)<\xi<f(b)$, then there is $c \in[a, b]$ such that $f(c)=\xi$. We defined c by the formula $c=\sup \{x \in[a, b] \mid f(x)<\xi\}$.

Then we showed that $f(c)=\xi$ by considering two cases $f(c)>\xi$ and $f(c)<\xi$ and drawing a contradiction in both cases. However, our argument does not work if $c=a$ in the first case or $c=b$ in the second case. Show that both these situations are in fact impossible.

Solution. Continuity of f at b means that for any $\varepsilon>0$ there exists $\delta>0$ such that $|f(x)-f(b)|<\varepsilon$ whenever $|x-b|<\delta$ and $x \in[a, b]$. Take $\varepsilon=f(b)-\xi$ (this is a positive number), and find the corresponding δ. Then for $x \in(b-\delta, b]$ we have $|f(x)-f(b)|<f(b)-\xi$, which in particular means that $f(x)>\xi$. So, all points of $(b-\delta, b]$ are not in the set $S=\{x \in[a, b] \mid f(x)<\xi\}$, and it follows that $b-\delta$ is an upper bound for S. So, for the least upper bound c, we have $c \leq b-\delta$, and thus $c \neq b$.

Further, continuity of f at a means that for any $\varepsilon>0$ there exists $\delta^{\prime}>0$ such that $|f(x)-f(a)|<\varepsilon$ whenever $|x-a|<\delta$ and $x \in[a, b]$. Take $\varepsilon=\xi-f(a)$ (this is a positive number), and find the corresponding δ^{\prime}. Then for $x \in\left[a, a+\delta^{\prime}\right)$ we have $|f(x)-f(a)|<$ $\xi-f(a)$, which in particular means that $f(x)<\xi$. So, $\left[a, a+\delta^{\prime}\right) \subset S=\{x \in[a, b] \mid f(x)<\xi\}$. In particular, we have $a+\frac{1}{2} \delta^{\prime} \in S$. But since c is an upper bound for S, it follows that $c \geq a+\frac{1}{2} \delta^{\prime}$, and thus $c \neq a$, ending the proof.

