
MAT337H1, Introduction to Real Analysis: solution to Exercise C for
Section 5.6 and Problem 1 from additional recommended problems for Feb 15

class

Exercise C for Section 5.6. Show that 2 sin(x) + 3 cos(x) = x has three solutions.

Solution. Consider the function f(x) = 2 sin(x) + 3 cos(x)− x. Notice that

f(−π) = −3 + π > 0, f(−π
2

) = −2 +
π

2
< 0, f(0) = 3 > 0, f(π) = −3− π < 0.

So, the function f changes sign in intervals [−π,−π
2
], [−π

2
, 0], [0, π], and hence has at least

one zero in each of these intervals. (Here we are using continuity of f and the intermediate
value theorem.) But f(x) = 0 if and only if 2 sin(x) + 3 cos(x) = x, so it follows that the
latter equation has at least three solutions.

Showing that the our equation has exactly three solutions is more tricky. First, using
some trigonometry, we get

2 sin(x) + 3 cos(x) =
√

15(sin(x) cos(α) + cos(x) sin(α)) =
√

15 sin(x+ α),

where α is such that cos(α) = 2/
√

15 and sin(α) = 3/
√

15. It follows that the left-hand
side of our equation is always between

√
15 and −

√
15, which means that all solutions of

the equation belong to the interval [−
√

15,
√

15]. Further, notice that for x ∈ [π, 3π
2

] the
left-hand side of our equation is non-positive, while the right-hand side is positive, so there
are no solutions in this interval. Since

√
15 ∈ [π, 3π

2
], it follows that all solutions of our

equation in fact lie in the interval [−
√

15, π]. Further, if x ∈ [−3π
2
,−π], we have sin(x) ≥ 0,

so 2 sin(x) + 3 cos(x) ≥ −3. On the other hand, the right-hand side of our equation in this
interval is less than −3. So, there are no solutions in [−3π

2
,−π] as well, and all solutions lie

in [−π, π].
Now it remains to show that f(x) has at most three zeros in the interval [−π, π]. Using

the above computation, we have

f(x) =
√

15 sin(x+ α)− x,

so
f ′(x) =

√
15 cos(x+ α)− 1.

Notice that the solutions of the equation f ′(x) = 0 are of the form x1 + 2πk, x2 + 2πk.
Therefore, f ′(x) has at most two zeros in (−π, π). (One zero of the form x1 + 2πk, and
one of the form x2 + 2πk. There cannot be two zeros of the same form, because then the
distance between them would be at least 2π, so they cannot both lie in (−π, π).) But then
it follows that f has at most three zeros in [−π, π]: if there were four zeros, it would follow
by Rolle’s theorem that f ′(x) has at least three zeros in (−π, π). (An alternative approach
not employing Rolle’s theorem is to use that f is monotonous in the intervals where f ′ does
not change sign, and to use that a strictly monotonous function cannot take the same value
twice.)

Problem 1 from additional recommended problems. In class we proved that if f
is a continuous function on [a, b], and ξ is a number such that f(a) < ξ < f(b), then there
is c ∈ [a, b] such that f(c) = ξ. We defined c by the formula c = sup {x ∈ [a, b] | f(x) < ξ}.



Then we showed that f(c) = ξ by considering two cases f(c) > ξ and f(c) < ξ and drawing
a contradiction in both cases. However, our argument does not work if c = a in the first case
or c = b in the second case. Show that both these situations are in fact impossible.

Solution. Continuity of f at b means that for any ε > 0 there exists δ > 0 such that
|f(x) − f(b)| < ε whenever |x − b| < δ and x ∈ [a, b]. Take ε = f(b) − ξ (this is a positive
number), and find the corresponding δ. Then for x ∈ (b−δ, b] we have |f(x)−f(b)| < f(b)−ξ,
which in particular means that f(x) > ξ. So, all points of (b − δ, b] are not in the set
S = {x ∈ [a, b] | f(x) < ξ}, and it follows that b − δ is an upper bound for S. So, for the
least upper bound c, we have c ≤ b− δ, and thus c 6= b.

Further, continuity of f at a means that for any ε > 0 there exists δ′ > 0 such that
|f(x) − f(a)| < ε whenever |x − a| < δ and x ∈ [a, b]. Take ε = ξ − f(a) (this is a positive
number), and find the corresponding δ′. Then for x ∈ [a, a + δ′) we have |f(x) − f(a)| <
ξ−f(a), which in particular means that f(x) < ξ. So, [a, a+δ′) ⊂ S = {x ∈ [a, b] | f(x) < ξ}.
In particular, we have a + 1

2
δ′ ∈ S. But since c is an upper bound for S, it follows that

c ≥ a+ 1
2
δ′, and thus c 6= a, ending the proof.
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