MAT337H1, Introduction to Real Analysis: solution of Problems 1b and 1c from additional recommended problems for Feb 3 class

Problem 1b. Show, using the definition of continuity, that the function $f(x)=\frac{1}{x}$ is continuous at every point where it is defined.

Solution. This function is defined for any $x \neq 0$. So we need to show that it is continuous at every point $x_{0} \neq 0$. Continuity at x_{0} means that for any $\varepsilon>0$ there is $\delta>0$ such that $\left|\frac{1}{x}-\frac{1}{x_{0}}\right|<\varepsilon$ whenever $\left|x-x_{0}\right|<\delta($ and $x \neq 0)$. We have

$$
\left|\frac{1}{x}-\frac{1}{x_{0}}\right|=\frac{\left|x-x_{0}\right|}{|x|\left|x_{0}\right|}
$$

Provided that $\left|x-x_{0}\right|<\delta$, the numerator is bounded above by δ. Further, we need to bound the denominator from below. Since $\left|x_{0}\right|$ is a constant, it suffices to bound below $|x|$. Although there is no universal bound ($|x|$ can take any non-zero value), $|x|$ is bounded below when x is sufficiently close to x_{0}. For example, if $\delta \leq \frac{1}{2}\left|x_{0}\right|$, we have that $|x|>\frac{1}{2}\left|x_{0}\right|$ whenever $\left|x-x_{0}\right|<\delta$. So, if $\delta \leq \frac{1}{2}\left|x_{0}\right|$ and $\left|x-x_{0}\right|<\delta$, we get

$$
\left|\frac{1}{x}-\frac{1}{x_{0}}\right|<\frac{2 \delta}{x_{0}^{2}},
$$

and to get that $\left|\frac{1}{x}-\frac{1}{x_{0}}\right|<\varepsilon$, we need

$$
\frac{2 \delta}{x_{0}^{2}} \leq \varepsilon
$$

Combining this with the inequality $\delta \leq \frac{1}{2}\left|x_{0}\right|$, we conclude that

$$
\delta=\min \left(\frac{\left|x_{0}\right|}{2}, \frac{\varepsilon x_{0}^{2}}{2}\right)
$$

is what we are looking for.
Problem 1c. Show, using the definition of continuity, that the function $f(x)=\sqrt{x}$ is continuous at every point where it is defined.

Solution. This function is defined for any $x \geq 0$. So we need to show that it is continuous at every point $x_{0} \geq 0$. We do it separately for $x_{0} \neq 0$ and $x_{0}=0$. First consider the case $x_{0} \neq 0$. Continuity at x_{0} means that for any $\varepsilon>0$ there is $\delta>0$ such that $\left|\sqrt{x}-\sqrt{x_{0}}\right|<\varepsilon$ whenever $\left|x-x_{0}\right|<\delta$ (and $x \geq 0$). For $x_{0} \neq 0$, we have

$$
\left|\sqrt{x}-\sqrt{x_{0}}\right|=\frac{\left|x-x_{0}\right|}{\sqrt{x}+\sqrt{x_{0}}} \leq \frac{\left|x-x_{0}\right|}{\sqrt{x_{0}}}
$$

so if $\left|x-x_{0}\right|<\varepsilon \sqrt{x_{0}}$, then $\left|\sqrt{x}-\sqrt{x_{0}}\right|<\varepsilon$. Hence we can take $\delta=\varepsilon \sqrt{x_{0}}$.
Now we prove continuity at $x_{0}=0$. Continuity at 0 means that for any $\varepsilon>0$ there is $\delta>0$ such that $|\sqrt{x}|<\varepsilon$ whenever $|x|<\delta$ (and $x \geq 0$). Clearly, $\delta=\varepsilon^{2}$ works. (Indeed, $0 \leq x<\varepsilon^{2} \Rightarrow \sqrt{x}<\varepsilon$.) So, continuity at 0 is also proved.

