UNIVERSITY OF TORONTO The Faculty of Arts and Science

APRIL 2017 EXAMINATIONS

MAT 337H1 Duration: 3 hours

NO AIDS ALLOWED

Total marks for this paper: 100. This paper contains 2 pages.

Note: It is not necessary to reprove facts which are proved in the textbook or have been proved in class. However, you should always state the fact that you are using. When using a theorem, say under what conditions the theorem applies and explain why these conditions are satisfied in your case.

1. (a) (10 pts) Prove that

$$\lim_{n \to \infty} \frac{n+2}{2n-3} = \frac{1}{2}$$

(b) (10 pts) Does there exist natural number N such that

$$\left|\frac{n+2}{2n-3} - \frac{1}{2}\right| < 10^{-5}$$

for every natural number $n \ge N$? If yes, find this number N. If no, prove that it does not exist.

- 2. (10 pts) Prove that the equation $x^5 + x = a$ has a real solution for any $a \in \mathbb{R}$. Hint: Apply the intermediate value theorem on a suitable interval.
- 3. (a) (10 pts) Define what it means for a function f to be Riemann integrable on [a, b] and for a number I to be the integral of f on [a, b].
 - (b) (10 pts) Let f be a function integrable on [0, 2]. Show, using the definition from part (a), that f(2x) is integrable on [0, 1] and that

$$\int_{0}^{1} f(2x)dx = \frac{1}{2}\int_{0}^{2} f(x)dx.$$

Hint: If $P = \{x_0 < \cdots < x_n\}$ is a partition of [0, 1], and $X = \{x_1^*, \ldots, x_n^*\}$ is an evaluation sequence for P, then $P' = \{2x_0 < \cdots < 2x_n\}$ is a partition of [0, 2], and $X' = \{2x_1^*, \ldots, 2x_n^*\}$ is an evaluation sequence for P'. Compare the Riemann sums I(f(2x), P, X) and I(f(x), P', X'). 4. (10 pts) Let f(x) be a function which is continuous for any $x \in \mathbb{R}$ and differentiable for any $x \neq 0$. Assume also that there exists a (finite) limit $\lim_{x\to 0} f'(x)$. Prove that f(x) is differentiable at 0, and that $f'(0) = \lim_{x\to 0} f'(x)$.

Hint: Use the definition of f'(0). Apply the mean value theorem to the numerator of the expression under the limit sign.

- 5. (a) (10 pts) Let (X_1, ρ_1) and (X_2, ρ_2) be metric spaces. Define what it means for a mapping $\phi: X_1 \to X_2$ to be continuous (with respect to the metrics ρ_1, ρ_2).
 - (b) (10 pts) Let X_1 be the set C[0, 1] of functions continuous on [0, 1] endowed with the L^1 -metric

$$\rho_1(f,g) = \int_0^1 |f(x) - g(x)| dx$$

Let also X_2 be the same set endowed with the uniform metric

$$\rho_2(f,g) = \sup_{[0,1]} |f-g|.$$

Let ϕ be the identity mapping from X_1 to X_2 , i.e., the mapping given by $\phi(f) = f$. Is ϕ continuous? Justify your answer.

Hint: Find a sequence of functions $f_n \in C[0,1]$ converging to 0 in the L^1 -metric but not converging to 0 in the uniform metric.

- 6. Let a_n be a bounded sequence of real numbers, and let $b_n = \sup\{a_n, a_{n+1}, \dots\}$.
 - (a) (10 pts) By using the monotone convergence theorem, or otherwise, show that the sequence b_n is convergent.
 - (b) (10 pts) Assume, in addition, that a_n is convergent. Show that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.