MAT337H1, Introduction to Real Analysis: notes on Riemann integration

1 Definition of the Riemann integral

Definition 1.1. Let $[a, b] \subset \mathbb{R}$ be a closed interval. A partition P of $[a, b]$ is a finite set of points $x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}$ in $[a, b]$ such that $x_{0}=a$ and $x_{n}=b$.

Each such collection of points partitions $[a, b]$ into subintervals $\left[x_{0}, x_{1}\right], \ldots,\left[x_{n-1}, x_{n}\right]$. Hence the name.

Let $P=\left\{x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}\right\}$ be a partition of $[a, b]$. Denote the interval $\left[x_{j-1}, x_{j}\right]$ by I_{j}. We get n such intervals I_{1}, \ldots, I_{n}.

Definition 1.2. A set $X=\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ of n real numbers is called an evaluation sequence for a partition $P=\left\{x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}\right\}$ if $x_{j}^{\prime} \in I_{j}$ for every $j=1, \ldots, n$.

Further, let f be a function on $[a, b]$. Let also $\Delta_{j}=x_{j}-x_{j-1}$ be the length of the interval I_{j}.

Definition 1.3. The Riemann sum associated with a function f on $[a, b]$, a partition P of $[a, b]$, and an evaluation sequence $X=\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ for partition P is the number

$$
I(f, P, X)=\sum_{j=1}^{n} f\left(x_{j}^{\prime}\right) \Delta_{j}
$$

The number $I(f, P, X)$ can be interpreted as the (signed) area between the horizontal axis and the graph of a piecewise constant function equal to $f\left(x_{j}^{\prime}\right)$ on the interval I_{j}. This function is a good approximation for f when (adjacent) points of P are close to each other. For this reason, we would like to define the integral of f (i.e., the area between the horizontal axis and the graph of f) as the limit of $I(f, P, X)$, as the points of P get close to each other. To define this limit, we introduce the following notion.

Definition 1.4. The mesh of a partition $P=\left\{x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}\right\}$ is the number $\operatorname{mesh}(P)$ defined by $\operatorname{mesh}(P)=\max \left(\Delta_{1}, \ldots, \Delta_{n}\right)$.

In other words, the mesh is the maximal distance between adjacent points of the partition. The mesh of a partition P is small if and only if all adjacent points of P are close to each other. Thus, we define the integral of f to be the limit $\lim _{\operatorname{mesh}(P) \rightarrow 0} I(f, P, X)$. This does not yet have a precise meaning, because $I(f, P, X)$ is not a function of mesh (P). Instead, it depends on P itself, as well as on X. A precise definition of the integral is the following.

Definition 1.5. A function f on $[a, b]$ is called (Riemann) integrable on $[a, b]$ if there is a number $I \in \mathbb{R}$ with the following property: for every $\varepsilon>0$ there exists $\delta>0$ such that for any partition P of $[a, b]$ with $\operatorname{mesh}(P)<\delta$ and any evaluation sequence X we have $|I(f, P, X)-I|<\varepsilon$. The number I is called the (Riemann) integral ${ }^{1}$ of f on $[a, b]$ and is denoted by $\int_{a}^{b} f(x) d x$.

[^0]Example 1.6. The Dirichlet function

$$
f(x)= \begin{cases}1, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

is not integrable on $[0,1]$. Indeed, let P be any partition of $[0,1]$. Then, since any interval contains both rational and irrational numbers, we can choose an evaluation sequence X_{1} all whose points are rational, and an evaluation sequence X_{2} all whose points are irrational. Then the corresponding Riemann sums are $I\left(f, P, X_{1}\right)=1$ and $I\left(f, P, X_{2}\right)=0$. On the other hand, if f is integrable, then for every $\varepsilon>0$ there exists $\delta>0$ such that for any partition P of $[a, b]$ with $\operatorname{mesh}(P)<\delta$ and any evaluation sequence X we have $|I(f, P, X)-I|<\varepsilon$, where $I=\int_{0}^{1} f(x) d x$. Applying this for $\varepsilon=\frac{1}{2}$, any partition P of $[a, b]$ with $\operatorname{mesh}(P)<\delta$, and X_{1}, X_{2} constructed above, we get that $|1-I|<\frac{1}{2}$ and $|I|<\frac{1}{2}$. But numbers I with these properties do not exist. So, the Dirichlet function is not integrable.

2 Integrability of continuous functions

In this section we prove the following result.
Theorem 2.1. Every function continuous on a closed interval $[a, b]$ is integrable on $[a, b]$.
To prove this theorem, we need several preliminary statements. First, we introduce the notions of lower and upper sums:

Definition 2.2. Let f be a bounded function on a closed interval [a, b]. For a partition $P=\left\{x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}\right\}$ of $[a, b]$ the corresponding upper sum is

$$
U(f, P)=\sum_{j=1}^{n}\left(\sup _{x \in I_{j}} f(x)\right) \cdot \Delta_{j}
$$

where, as above, $I_{j}=\left[x_{j-1}, x_{j}\right]$, and $\Delta_{j}=x_{j}-x_{j-1}$ is the length of the interval I_{j}. Similarly, the lower sum corresponding to f and P is

$$
L(f, P)=\sum_{j=1}^{n}\left(\inf _{x \in I_{j}} f(x)\right) \cdot \Delta_{j}
$$

Comparing this definition with the definition of Riemann sums, we get the following.
Proposition 2.3. Let f be a bounded function on a closed interval $[a, b]$. Then, for any partition P of $[a, b]$ and any evaluation sequence X for P, we have

$$
L(f, P) \leq I(f, P, X) \leq U(f, P)
$$

In particular, we always have $L(f, P) \leq U(f, P)$. In fact, a stronger statement holds true:
Lemma 2.4. Let f be a bounded function on a closed interval $[a, b]$. Then, for any partitions P and Q of $[a, b]$, we have

$$
L(f, P) \leq U(f, Q)
$$

The proof of this lemma is based on the notion of a refinement of a partition:
Definition 2.5. A partition R of $[a, b]$ is a refinement of a partition P of $[a, b]$ if R is obtained from P by adding a certain number of points, i.e., if $P \subset R$.

Lemma 2.6. Let f be a bounded function on a closed interval $[a, b]$. Let also P be a partition of $[a, b]$, and let R be a refinement of P. Then

$$
U(f, R) \leq U(f, P), \quad L(f, R) \geq L(f, P)
$$

Exercise 2.7. Prove Lemma 2.6.
Proposition 2.8. Let P and Q be partitions of $[a, b]$. Then there is a partition R of $[a, b]$ which is a refinement of both P and Q.

Proof. One can take $R=P \cup Q$.
Now we prove Lemma 2.4.
Proof of Lemma 2.4. Let R be a common refinement of P and Q. Then, by Lemma 2.6,

$$
L(f, P) \leq L(f, R)
$$

Furthermore, by Proposition 2.3, we have

$$
L(f, R) \leq U(f, R)
$$

Finally, by Lemma 2.6, we have

$$
U(f, R) \leq U(f, Q)
$$

Combining these three inequalities, we get the result of the lemma.
Now, for a bounded function f on $[a, b]$, let

$$
\mathcal{U}(f)=\{U(f, P) \mid P \text { is a partition of }[a, b]\}
$$

be the set of all possible upper sums for this function. Similarly, let

$$
\mathcal{L}(f)=\{L(f, P) \mid P \text { is a partition of }[a, b]\}
$$

be the set of all possible lower sums ${ }^{2}$. Then we have the following corollary of Lemma 2.4:
Corollary 2.9. The set $\mathcal{U}(f)$ is bounded below, while the set $\mathcal{L}(f)$ is bounded above.
Proof. Let P be any partition of $[a, b]$. Then, by Lemma 2.4, $L(f, P)$ is a lower bound for $\mathcal{U}(f)$, while $U(f, P)$ is an upper bound for $\mathcal{L}(f)$.

We also get the following:
Corollary 2.10. $\sup \mathcal{L}(f) \leq \inf \mathcal{U}(f)$.

[^1]Proof. By Lemma 2.4 we have that $L(f, P)$ is a lower bound for $\mathcal{U}(f)$ for any partition P. So, $L(f, P) \leq \inf \mathcal{U}(f)$ for any partition P, meaning that $\inf \mathcal{U}(f)$ is an upper bound for $\mathcal{L}(f)$, and thus $\inf \mathcal{U}(f) \geq \sup \mathcal{L}(f)$.

Our further strategy is to show that $\sup \mathcal{L}(f)=\inf \mathcal{U}(f)$ for a continuous function f, and that both numbers are equal to the Riemann integral of f (in particular, f is integrable). The following lemma is the main ingredient of the proof:

Lemma 2.11. Let f be continuous on $[a, b]$. Then for every $\varepsilon>0$ there exists $\delta>0$ such that for any partition P of $[a, b]$ with $\operatorname{mesh}(P)<\delta$ we have $U(f, P)-L(f, P)<\varepsilon$.

Proof. We have

$$
U(f, P)-L(f, P)=\sum_{j=1}^{n}\left(\sup _{x \in I_{j}} f(x)-\inf _{x \in I_{j}} f(x)\right) \cdot \Delta_{j}
$$

Since f is continuous on I_{j}, and I_{j} is a closed interval, it follows that f attains its supremum and infimum on I_{j}, and

$$
U(f, P)-L(f, P)=\sum_{j=1}^{n}\left(f\left(x_{j}^{\max }\right)-f\left(x_{j}^{\min }\right)\right) \cdot \Delta_{j}
$$

for certain $x_{j}^{\max }, x_{j}^{\min } \in I_{j}$. Further, since f is continuous on $[a, b]$, it follows that f is uniformly continuous on $[a, b]$ and there exists δ such that $|f(y)-f(x)|<\varepsilon /(b-a)$ for any $x, y \in[a, b]$ with $|x-y|<\delta$. In particular, if $\operatorname{mesh}(P)<\delta$, then $\left|x_{j}^{\max }-x_{j}^{\min }\right|<\delta$, so $f\left(x_{j}^{\text {max }}\right)-f\left(x_{j}^{\min }\right)<\varepsilon /(b-a)$ (we omit the absolute value sign in the left-hand side since $f\left(x_{j}^{\max }\right)-f\left(x_{j}^{\min }\right)>0$ by construction $)$. So,

$$
U(f, P)-L(f, P)=\sum_{j=1}^{n}\left(f\left(x_{j}^{\max }\right)-f\left(x_{j}^{\min }\right)\right) \cdot \Delta_{j}<\sum_{j=1}^{n} \frac{\varepsilon}{b-a} \cdot \Delta_{j}=\varepsilon
$$

whenever $\operatorname{mesh}(P)<\delta$, as desired. (Here we use that $\sum_{j=1}^{n} \Delta_{j}=b-a$.)
Corollary 2.12. Let f be continuous on $[a, b]$. Then $\sup \mathcal{L}(f)=\inf \mathcal{U}(f)$.
Proof. Take any $\varepsilon>0$. Using Lemma 2.11, we find a partition P of $[a, b]$ with $U(f, P)-$ $I(f, P)<\varepsilon$. Then, since $\inf \mathcal{U}(f) \leq U(f, P)$, and $\sup \mathcal{L}(f) \geq L(f, P)$, we have

$$
\inf \mathcal{U}(f)-\sup \mathcal{L}(f) \leq U(f, P)-L(f, P)<\varepsilon
$$

So, $\inf \mathcal{U}(f)-\sup \mathcal{L}(f)<\varepsilon$ for any $\varepsilon>0$, meaning that $\inf \mathcal{U}(f)-\sup \mathcal{L}(f) \leq 0$. Combining this with Corollary 2.10, we get the result.

Finally, we prove the main result.
Proof of Theorem 2.1. We will show that the number I defined by $I=\sup \mathcal{L}(f)=\inf \mathcal{U}(f)$ (the latter two numbers are equal by Corollary 2.12) is the integral of f. To that end, we need to prove that for every $\varepsilon>0$ there exists $\delta>0$ such that for any partition P of $[a, b]$ with $\operatorname{mesh}(P)<\delta$ and any evaluation sequence X we have $|I(f, P, X)-I|<\varepsilon$. Take any $\varepsilon>0$. Then, by Lemma 2.11 there exists $\delta>0$ such that for any partition P of $[a, b]$ with
$\operatorname{mesh}(P)<\delta$ we have $U(f, P)-L(f, P)<\varepsilon$. We show that this is δ we are looking for. Indeed, let P be any partition with $\operatorname{mesh}(P)<\delta$, and let X be any evaluation sequence for P. Then

$$
I-\varepsilon<I=\inf \mathcal{U}(f) \leq U(f, P)<L(f, P)+\varepsilon \leq \sup \mathcal{L}(f)+\varepsilon=I+\varepsilon .
$$

(The inequality $U(f, P)<L(f, P)+\varepsilon$ follows from $U(f, P)-L(f, P)<\varepsilon$. The latter is true because $\operatorname{mesh}(P)<\delta$.). Similarly,

$$
I-\varepsilon=\inf \mathcal{U}(f)-\varepsilon \leq U(f, P)-\varepsilon<L(f, P) \leq \sup \mathcal{L}(f)=I<I+\varepsilon .
$$

So, both $U(f, P)$ and $L(f, P)$ are in the ε-neighborhood of I. Furthermore, using Proposition 2.3, we get

$$
I-\varepsilon<L(f, P) \leq I(f, P, X) \leq U(f, P)<I+\varepsilon
$$

so the Riemann sum $I(f, P, X)$ is also in the ε-neighborhood of I, as desired.

[^0]: ${ }^{1}$ Check that if the number I with the above property exists, then it is unique. Therefore, any integrable function has well-defined integral.

[^1]: ${ }^{2}$ Note that the sets $\mathcal{U}(f)$ and $\mathcal{L}(f)$ depend both on the function f and the interval $[a, b]$. We omit the dependence on $[a, b]$ in the notation for the sake of simplicity. This should not cause any confusion since the interval $[a, b]$ is fixed throughout the whole section.

