
MAT337H1, Introduction to Real Analysis: notes on Riemann
integration

1 Definition of the Riemann integral

Definition 1.1. Let [a, b] ⊂ R be a closed interval. A partition P of [a, b] is a finite set of
points x0 < x1 < · · · < xn−1 < xn in [a, b] such that x0 = a and xn = b.

Each such collection of points partitions [a, b] into subintervals [x0, x1], . . . , [xn−1, xn].
Hence the name.

Let P = {x0 < x1 < · · · < xn−1 < xn} be a partition of [a, b]. Denote the interval
[xj−1, xj] by Ij. We get n such intervals I1, . . . , In.

Definition 1.2. A set X = {x′1, . . . , x′n} of n real numbers is called an evaluation sequence
for a partition P = {x0 < x1 < · · · < xn−1 < xn} if x′j ∈ Ij for every j = 1, . . . , n.

Further, let f be a function on [a, b]. Let also ∆j = xj − xj−1 be the length of the
interval Ij.

Definition 1.3. The Riemann sum associated with a function f on [a, b], a partition P
of [a, b], and an evaluation sequence X = {x′1, . . . , x′n} for partition P is the number

I(f, P,X) =
n∑

j=1

f(x′j)∆j.

The number I(f, P,X) can be interpreted as the (signed) area between the horizontal
axis and the graph of a piecewise constant function equal to f(x′j) on the interval Ij. This
function is a good approximation for f when (adjacent) points of P are close to each other.
For this reason, we would like to define the integral of f (i.e., the area between the horizontal
axis and the graph of f) as the limit of I(f, P,X), as the points of P get close to each other.
To define this limit, we introduce the following notion.

Definition 1.4. The mesh of a partition P = {x0 < x1 < · · · < xn−1 < xn} is the number
mesh(P ) defined by mesh(P ) = max(∆1, . . . ,∆n).

In other words, the mesh is the maximal distance between adjacent points of the partition.
The mesh of a partition P is small if and only if all adjacent points of P are close to each
other. Thus, we define the integral of f to be the limit limmesh(P )→0 I(f, P,X). This does
not yet have a precise meaning, because I(f, P,X) is not a function of mesh(P ). Instead, it
depends on P itself, as well as on X. A precise definition of the integral is the following.

Definition 1.5. A function f on [a, b] is called (Riemann) integrable on [a, b] if there is a
number I ∈ R with the following property: for every ε > 0 there exists δ > 0 such that
for any partition P of [a, b] with mesh(P ) < δ and any evaluation sequence X we have
|I(f, P,X) − I| < ε. The number I is called the (Riemann) integral1 of f on [a, b] and is

denoted by
∫ b

a
f(x)dx.

1Check that if the number I with the above property exists, then it is unique. Therefore, any integrable
function has well-defined integral.



Example 1.6. The Dirichlet function

f(x) =

{
1, if x ∈ Q,
0, if x /∈ Q.

is not integrable on [0, 1]. Indeed, let P be any partition of [0, 1]. Then, since any interval
contains both rational and irrational numbers, we can choose an evaluation sequence X1

all whose points are rational, and an evaluation sequence X2 all whose points are irrational.
Then the corresponding Riemann sums are I(f, P,X1) = 1 and I(f, P,X2) = 0. On the other
hand, if f is integrable, then for every ε > 0 there exists δ > 0 such that for any partition
P of [a, b] with mesh(P ) < δ and any evaluation sequence X we have |I(f, P,X) − I| < ε,

where I =
∫ 1

0
f(x)dx. Applying this for ε = 1

2
, any partition P of [a, b] with mesh(P ) < δ,

and X1, X2 constructed above, we get that |1 − I| < 1
2

and |I| < 1
2
. But numbers I with

these properties do not exist. So, the Dirichlet function is not integrable.

2 Integrability of continuous functions

In this section we prove the following result.

Theorem 2.1. Every function continuous on a closed interval [a, b] is integrable on [a, b].

To prove this theorem, we need several preliminary statements. First, we introduce the
notions of lower and upper sums :

Definition 2.2. Let f be a bounded function on a closed interval [a, b]. For a partition
P = {x0 < x1 < · · · < xn−1 < xn} of [a, b] the corresponding upper sum is

U(f, P ) =
n∑

j=1

(supx∈Ij f(x)) ·∆j,

where, as above, Ij = [xj−1, xj], and ∆j = xj−xj−1 is the length of the interval Ij. Similarly,
the lower sum corresponding to f and P is

L(f, P ) =
n∑

j=1

(infx∈Ij f(x)) ·∆j.

Comparing this definition with the definition of Riemann sums, we get the following.

Proposition 2.3. Let f be a bounded function on a closed interval [a, b]. Then, for any
partition P of [a, b] and any evaluation sequence X for P , we have

L(f, P ) ≤ I(f, P,X) ≤ U(f, P ).

In particular, we always have L(f, P ) ≤ U(f, P ). In fact, a stronger statement holds true:

Lemma 2.4. Let f be a bounded function on a closed interval [a, b]. Then, for any partitions
P and Q of [a, b], we have

L(f, P ) ≤ U(f,Q).
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The proof of this lemma is based on the notion of a refinement of a partition:

Definition 2.5. A partition R of [a, b] is a refinement of a partition P of [a, b] if R is obtained
from P by adding a certain number of points, i.e., if P ⊂ R.

Lemma 2.6. Let f be a bounded function on a closed interval [a, b]. Let also P be a partition
of [a, b], and let R be a refinement of P . Then

U(f,R) ≤ U(f, P ), L(f,R) ≥ L(f, P ).

Exercise 2.7. Prove Lemma 2.6.

Proposition 2.8. Let P and Q be partitions of [a, b]. Then there is a partition R of [a, b]
which is a refinement of both P and Q.

Proof. One can take R = P ∪Q.

Now we prove Lemma 2.4.

Proof of Lemma 2.4. Let R be a common refinement of P and Q. Then, by Lemma 2.6,

L(f, P ) ≤ L(f,R).

Furthermore, by Proposition 2.3, we have

L(f,R) ≤ U(f,R).

Finally, by Lemma 2.6, we have
U(f,R) ≤ U(f,Q).

Combining these three inequalities, we get the result of the lemma.

Now, for a bounded function f on [a, b], let

U(f) = {U(f, P ) | P is a partition of [a, b]}

be the set of all possible upper sums for this function. Similarly, let

L(f) = {L(f, P ) | P is a partition of [a, b]}

be the set of all possible lower sums2. Then we have the following corollary of Lemma 2.4:

Corollary 2.9. The set U(f) is bounded below, while the set L(f) is bounded above.

Proof. Let P be any partition of [a, b]. Then, by Lemma 2.4, L(f, P ) is a lower bound for
U(f), while U(f, P ) is an upper bound for L(f).

We also get the following:

Corollary 2.10. supL(f) ≤ inf U(f).

2Note that the sets U(f) and L(f) depend both on the function f and the interval [a, b]. We omit the
dependence on [a, b] in the notation for the sake of simplicity. This should not cause any confusion since the
interval [a, b] is fixed throughout the whole section.
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Proof. By Lemma 2.4 we have that L(f, P ) is a lower bound for U(f) for any partition P .
So, L(f, P ) ≤ inf U(f) for any partition P , meaning that inf U(f) is an upper bound for
L(f), and thus inf U(f) ≥ supL(f).

Our further strategy is to show that supL(f) = inf U(f) for a continuous function f , and
that both numbers are equal to the Riemann integral of f (in particular, f is integrable).
The following lemma is the main ingredient of the proof:

Lemma 2.11. Let f be continuous on [a, b]. Then for every ε > 0 there exists δ > 0 such
that for any partition P of [a, b] with mesh(P ) < δ we have U(f, P )− L(f, P ) < ε.

Proof. We have

U(f, P )− L(f, P ) =
n∑

j=1

(supx∈Ij f(x)− infx∈Ij f(x)) ·∆j.

Since f is continuous on Ij, and Ij is a closed interval, it follows that f attains its supremum
and infimum on Ij, and

U(f, P )− L(f, P ) =
n∑

j=1

(f(xmax
j )− f(xmin

j )) ·∆j

for certain xmax
j , xmin

j ∈ Ij. Further, since f is continuous on [a, b], it follows that f is
uniformly continuous on [a, b] and there exists δ such that |f(y)− f(x)| < ε/(b− a) for any
x, y ∈ [a, b] with |x − y| < δ. In particular, if mesh(P ) < δ, then |xmax

j − xmin
j | < δ, so

f(xmax
j ) − f(xmin

j ) < ε/(b − a) (we omit the absolute value sign in the left-hand side since
f(xmax

j )− f(xmin
j ) > 0 by construction). So,

U(f, P )− L(f, P ) =
n∑

j=1

(f(xmax
j )− f(xmin

j )) ·∆j <
n∑

j=1

ε

b− a
·∆j = ε

whenever mesh(P ) < δ, as desired. (Here we use that
∑n

j=1 ∆j = b− a.)

Corollary 2.12. Let f be continuous on [a, b]. Then supL(f) = inf U(f).

Proof. Take any ε > 0. Using Lemma 2.11, we find a partition P of [a, b] with U(f, P ) −
I(f, P ) < ε. Then, since inf U(f) ≤ U(f, P ), and supL(f) ≥ L(f, P ), we have

inf U(f)− supL(f) ≤ U(f, P )− L(f, P ) < ε.

So, inf U(f)−supL(f) < ε for any ε > 0, meaning that inf U(f)−supL(f) ≤ 0. Combining
this with Corollary 2.10, we get the result.

Finally, we prove the main result.

Proof of Theorem 2.1. We will show that the number I defined by I = supL(f) = inf U(f)
(the latter two numbers are equal by Corollary 2.12) is the integral of f . To that end, we
need to prove that for every ε > 0 there exists δ > 0 such that for any partition P of [a, b]
with mesh(P ) < δ and any evaluation sequence X we have |I(f, P,X) − I| < ε. Take any
ε > 0. Then, by Lemma 2.11 there exists δ > 0 such that for any partition P of [a, b] with
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mesh(P ) < δ we have U(f, P ) − L(f, P ) < ε. We show that this is δ we are looking for.
Indeed, let P be any partition with mesh(P ) < δ, and let X be any evaluation sequence
for P . Then

I − ε < I = inf U(f) ≤ U(f, P ) < L(f, P ) + ε ≤ supL(f) + ε = I + ε.

(The inequality U(f, P ) < L(f, P ) + ε follows from U(f, P )−L(f, P ) < ε. The latter is true
because mesh(P ) < δ.). Similarly,

I − ε = inf U(f)− ε ≤ U(f, P )− ε < L(f, P ) ≤ supL(f) = I < I + ε.

So, both U(f, P ) and L(f, P ) are in the ε-neighborhood of I. Furthermore, using Proposi-
tion 2.3, we get

I − ε < L(f, P ) ≤ I(f, P,X) ≤ U(f, P ) < I + ε,

so the Riemann sum I(f, P,X) is also in the ε-neighborhood of I, as desired.
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