MAT337H1, Introduction to Real Analysis: additional recommended problems for Jan 11 class

- 1. Assume that $a, b \in \mathbb{R}$, a, b > 0, $a \neq b$. Let $a_0.a_1...$ and $b_0.b_1...$ be decimal expansions of a and b respectively. Let also i be a minimal non-negative integer such that $a_i \neq b_i$. Then
 - (a) if $a_i > b_i$, we say that a > b;
 - (b) if $a_i < b_i$, we say that a < b.

You need to show that this definition is unambiguous, i.e. that the so defined notion of a being greater (or less) than b does not depend on the choice of their infinite decimal expansions.

2. Prove that the set $\{x \in \mathbb{Q} \mid x > 0, x^2 < 2\}$ is bounded above but does not have a supremum in \mathbb{Q} .