MAT337H1, Introduction to Real Analysis: additional recommended problems for Jan 11 class

1. Assume that $a, b \in \mathbb{R}, a, b>0, a \neq b$. Let $a_{0} . a_{1} \ldots$ and $b_{0} . b_{1} \ldots$ be decimal expansions of a and b respectively. Let also i be a minimal non-negative integer such that $a_{i} \neq b_{i}$. Then
(a) if $a_{i}>b_{i}$, we say that $a>b$;
(b) if $a_{i}<b_{i}$, we say that $a<b$.

You need to show that this definition is unambiguous, i.e. that the so defined notion of a being greater (or less) than b does not depend on the choice of their infinite decimal expansions.
2. Prove that the set $\left\{x \in \mathbb{Q} \mid x>0, x^{2}<2\right\}$ is bounded above but does not have a supremum in \mathbb{Q}.

