MAT337H1, Introduction to Real Analysis: recommended problems for Jan 13 class

1. Show that $\inf \{x \in \mathbb{R} \mid x>-1\}=-1$.
2. Let S be a bounded below set containing at least one negative number. Recall the procedure for constructing $\inf S$ for such a set. Let $-m$ be a negative integer lower bound for S (why does such a lower bound exist?). Consider the integers $0,-1, \ldots,-(m-1)$. Find the smallest one which is not a lower bound for S (why does it exist?). Denote this integer by $-a_{0}$ (where a_{0} is a non-negative integer). Then consider the numbers $-a_{0} .0,-a_{0} .1, \ldots,-a_{0} .9$. Find the smallest one which is not a lower bound for S, and denote it by $-a_{0} \cdot a_{1}$. Then consider the numbers $-a_{0} \cdot a_{1} 0,-a_{0} \cdot a_{1} 1, \ldots,-a_{0} \cdot a_{1} 9$. Find the smallest one which is not a lower bound for S, and denote it by $-a_{0} \cdot a_{1} a_{2}$. Continuing this procedure, we obtain an infinite decimal expansion $-a_{0} \cdot a_{1} a_{2} \ldots$. Show that the corresponding real number is the infinum of S.
3. Apply the procedure described in Problem 2 to the set from Problem 1. What infinite decimal expansion do you get? How does it agree with the statement of Problem 1?
4. For any subset $S \subset \mathbb{R}$, set $-S=\{-x \mid x \in S\}$. Show that if S is bounded above, then $-S$ is bounded below. Also show that for $S \subset \mathbb{R}$ bounded above we have

$$
\sup S=-\inf (-S)
$$

