MAT337H1, Introduction to Real Analysis: recommended problems for Jan 18 class

1. For a positive real number $x=x_{0} \cdot x_{1} \ldots$, let $[x]_{n}=x_{0} \cdot x_{1} \ldots x_{n}$. For two positive real numbers x and y, we define their sum by

$$
x+y=\sup \left\{[x]_{n}+[y]_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}
$$

Show that for any three positive real numbers x, y, z, we have

$$
(x+y)+z=x+(y+z) .
$$

(You can use that addition of rational numbers has this property.)
2. Show that the following definition of $x+y$ is equivalent to the above:

$$
x+y=\sup \left\{[x]_{n}+[y]_{m} \mid m, n \in \mathbb{Z}, m, n \geq 0\right\}
$$

3. Prove that $\inf \left\{\left.\frac{1}{2 n^{3}-n} \right\rvert\, n \in \mathbb{Z}, n>0\right\}=0$.
4. Let $z=\sup \left\{x \in \mathbb{R} \mid x>0, x^{2}<2\right\}$. In class we showed that z^{2} cannot be greater than 2 . Show that z^{2} cannot be less than 2 either. Conclude that $z^{2}=2$. (From now on we will denote this number z by $\sqrt{2}$).
5. Show that $\sup \left\{x \in \mathbb{Q} \mid x>0, x^{2}<2\right\}=\sqrt{2}$.
