MAT337H1, Introduction to Real Analysis: Solutions to Problems 1 and 2 for
Jan 18 class

Problem 1. For a positive real number = = x¢.2; ..., let [z], = zo.2;...2,. For two
positive real numbers x and y, we define their sum by

z+y=sup{[z], + [yl. | n € Z,n >0}
Show that for any three positive real numbers z,y, z, we have
(Tt+y)+z=2+y+2)

(You can use that addition of rational numbers has this property.)

Remark. Note that the definition of [z], is ambiguous if x has two different decimal
representations. However, one can show that x +y, as defined above, does not depend on the
choice of decimal representations of x and y. Another way to overcome this problem is to
prohibit decimal representations of the form zq.z1...2,999..., and we take this approach
here.

Solution of Problem 1. Let A = {[z+y|, + [z]n | n € Z,n > 0}, B ={[z],+ [y + 2]» |
n € Z,n > 0}. We need to show that sup A = sup B. To prove this, we introduce the set
C ={[z]n+ [y|ln + [z]n | » € Z,n > 0} and show that sup A = supC and sup B = sup C.
It suffices to show that sup A = supC. The proof of sup B = sup C' is then achieved by
swapping x and z.

Let an, = [+ Y|n + [2]n, ¢ = [x]n + [y]n + [2]n. Notice that a,, > ¢,. Indeed, by definition
of x +y we have x +y > [z], + [y]n. Therefore, [z + y|,, > [[z]n + [y]n]n (this follows from
the definition of comparison of real numbers; it is important that we do not use decimal
representations of the form zg.z;...2,999...). But the number [z], + [y], has at most n
digits after the decimal point. Therefore, [[x], + [y]n]n = [2]n + [y]n, proving that a, > ¢,.

Now, since A = {a,, |n € Z,n >0}, C ={c, | n € Z,n > 0}, and a,, > ¢,, it follows that
sup A > sup C (check this).

Further, it is easy to see that for any positive real number w and any positive integers
m,n, one has [w],, < [w], + 107™. Therefore, [x],, + [Y]m < [z]n + [y]n +2 - 107", and it
follows that for x + y, defined as the supremum of the left-hand side over all m’s, we have
4y < [z],+ [y]ln +2-107" for any positive integer n. Thus, [z +y], < [z],+ [y], +2-107™,
ie,a,<c,+2-107"

So, since A ={a, |n€Z,n>0},C={c, | ne€Zn>0} and a, <c,+2-107", it
follows that sup A < sup C' (check this). Now we know that sup A > sup C and sup A <
sup C. So, sup A = sup C, as desired.

Problem 2. Show that the following definition of x + y is equivalent to the above:

x4y =sup{[z], + [y]m | m,n € Z,m,n > 0}.

Solution: Let A = {[z],, + [y|l» | n € Z,n > 0}, B = {[z], + [y|m | m,n € Z,m,n > 0}.
We need to show that sup A = sup B (both sets are non-empty and bounded above, e.g., by
[z]o + [y]o + 2, so these supremums are well-defined.) We use the following lemma.

Lemma. Let A;B C R be non-empty bounded above sets satysfying the following
conditions:



1. For any a € A, there exists b € B such that b > a.
2. For any b € B, there exists a € A, such that a > b.

Then sup A = sup B.

Proof of the lemma.

» Take any a € A. Then there exists b € B such that b > a. But since b < sup B, it
follows that a < sup B. So sup B is an upper bound for A, and it follows that sup B > sup A.
Analogously, one proves that sup A is an upper bound for B, so sup B > sup A. We conclude
that sup A = sup B, as desired. «

Now, it suffices to show that our sets A and B satisfy the conditions of the lemma. The
first condition (for any a € A, there exists b € B such that b > a) is obvious, since A C B,
and we can take b = a. So, we only need to verify the second condition (for any b € B,
there exists a € A, such that @ > b). Take any b € B. Then b = [z],, + [y]mn, where m, n
are non-negative integers. Let k& = max(m,n). Then we have [z|; > [z],, and [y]x > [y]m, so
[z]k + [y]lx > b. Since, [z] + [y]x € A, this ends the proof.



