MAT337H1, Introduction to Real Analysis: Solutions to Problems 1 and 2 for Jan 18 class

Problem 1. For a positive real number $x=x_{0} \cdot x_{1} \ldots$, let $[x]_{n}=x_{0} \cdot x_{1} \ldots x_{n}$. For two positive real numbers x and y, we define their sum by

$$
x+y=\sup \left\{[x]_{n}+[y]_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}
$$

Show that for any three positive real numbers x, y, z, we have

$$
(x+y)+z=x+(y+z)
$$

(You can use that addition of rational numbers has this property.)
Remark. Note that the definition of $[x]_{n}$ is ambiguous if x has two different decimal representations. However, one can show that $x+y$, as defined above, does not depend on the choice of decimal representations of x and y. Another way to overcome this problem is to prohibit decimal representations of the form $x_{0} \cdot x_{1} \ldots x_{n} 999 \ldots$, and we take this approach here.

Solution of Problem 1. Let $A=\left\{[x+y]_{n}+[z]_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}, B=\left\{[x]_{n}+[y+z]_{n} \mid\right.$ $n \in \mathbb{Z}, n \geq 0\}$. We need to show that $\sup A=\sup B$. To prove this, we introduce the set $C=\left\{[x]_{n}+[y]_{n}+[z]_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}$ and show that $\sup A=\sup C$ and $\sup B=\sup C$. It suffices to show that $\sup A=\sup C$. The proof of $\sup B=\sup C$ is then achieved by swapping x and z.

Let $a_{n}=[x+y]_{n}+[z]_{n}, c_{n}=[x]_{n}+[y]_{n}+[z]_{n}$. Notice that $a_{n} \geq c_{n}$. Indeed, by definition of $x+y$ we have $x+y \geq[x]_{n}+[y]_{n}$. Therefore, $[x+y]_{n} \geq\left[[x]_{n}+[y]_{n}\right]_{n}$ (this follows from the definition of comparison of real numbers; it is important that we do not use decimal representations of the form $\left.x_{0} \cdot x_{1} \ldots x_{n} 999 \ldots\right)$. But the number $[x]_{n}+[y]_{n}$ has at most n digits after the decimal point. Therefore, $\left[[x]_{n}+[y]_{n}\right]_{n}=[x]_{n}+[y]_{n}$, proving that $a_{n} \geq c_{n}$.

Now, since $A=\left\{a_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}, C=\left\{c_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}$, and $a_{n} \geq c_{n}$, it follows that $\sup A \geq \sup C$ (check this).

Further, it is easy to see that for any positive real number w and any positive integers m, n, one has $[w]_{m} \leq[w]_{n}+10^{-n}$. Therefore, $[x]_{m}+[y]_{m} \leq[x]_{n}+[y]_{n}+2 \cdot 10^{-n}$, and it follows that for $x+y$, defined as the supremum of the left-hand side over all m 's, we have $x+y \leq[x]_{n}+[y]_{n}+2 \cdot 10^{-n}$ for any positive integer n. Thus, $[x+y]_{n} \leq[x]_{n}+[y]_{n}+2 \cdot 10^{-n}$, i.e., $a_{n} \leq c_{n}+2 \cdot 10^{-n}$.

So, since $A=\left\{a_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}, C=\left\{c_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}$, and $a_{n} \leq c_{n}+2 \cdot 10^{-n}$, it follows that $\sup A \leq \sup C$ (check this). Now we know that sup $A \geq \sup C$ and $\sup A \leq$ $\sup C$. So, $\sup A=\sup C$, as desired.

Problem 2. Show that the following definition of $x+y$ is equivalent to the above:

$$
x+y=\sup \left\{[x]_{n}+[y]_{m} \mid m, n \in \mathbb{Z}, m, n \geq 0\right\}
$$

Solution: Let $A=\left\{[x]_{n}+[y]_{n} \mid n \in \mathbb{Z}, n \geq 0\right\}, B=\left\{[x]_{n}+[y]_{m} \mid m, n \in \mathbb{Z}, m, n \geq 0\right\}$. We need to show that $\sup A=\sup B$ (both sets are non-empty and bounded above, e.g., by $[x]_{0}+[y]_{0}+2$, so these supremums are well-defined.) We use the following lemma.

Lemma. Let $A, B \subset \mathbb{R}$ be non-empty bounded above sets satysfying the following conditions:

1. For any $a \in A$, there exists $b \in B$ such that $b \geq a$.
2. For any $b \in B$, there exists $a \in A$, such that $a \geq b$.

Then $\sup A=\sup B$.

Proof of the lemma.

- Take any $a \in A$. Then there exists $b \in B$ such that $b \geq a$. But since $b \leq \sup B$, it follows that $a \leq \sup B$. So $\sup B$ is an upper bound for A, and it follows that $\sup B \geq \sup A$. Analogously, one proves that sup A is an upper bound for B, so $\sup B \geq \sup A$. We conclude that $\sup A=\sup B$, as desired.

Now, it suffices to show that our sets A and B satisfy the conditions of the lemma. The first condition (for any $a \in A$, there exists $b \in B$ such that $b \geq a$) is obvious, since $A \subset B$, and we can take $b=a$. So, we only need to verify the second condition (for any $b \in B$, there exists $a \in A$, such that $a \geq b$). Take any $b \in B$. Then $b=[x]_{n}+[y]_{m}$, where m, n are non-negative integers. Let $k=\max (m, n)$. Then we have $[x]_{k} \geq[x]_{n}$ and $[y]_{k} \geq[y]_{m}$, so $[x]_{k}+[y]_{k} \geq b$. Since, $[x]_{k}+[y]_{k} \in A$, this ends the proof.

