
MAT337H1, Introduction to Real Analysis: Solutions to Problems 1 and 2 for
Jan 18 class

Problem 1. For a positive real number x = x0.x1 . . . , let [x]n = x0.x1 . . . xn. For two
positive real numbers x and y, we define their sum by

x + y = sup {[x]n + [y]n | n ∈ Z, n ≥ 0}.

Show that for any three positive real numbers x, y, z, we have

(x + y) + z = x + (y + z).

(You can use that addition of rational numbers has this property.)

Remark. Note that the definition of [x]n is ambiguous if x has two different decimal
representations. However, one can show that x+y, as defined above, does not depend on the
choice of decimal representations of x and y. Another way to overcome this problem is to
prohibit decimal representations of the form x0.x1 . . . xn999 . . . , and we take this approach
here.

Solution of Problem 1. Let A = {[x+ y]n + [z]n | n ∈ Z, n ≥ 0}, B = {[x]n + [y + z]n |
n ∈ Z, n ≥ 0}. We need to show that supA = supB. To prove this, we introduce the set
C = {[x]n + [y]n + [z]n | n ∈ Z, n ≥ 0} and show that supA = supC and supB = supC.
It suffices to show that supA = supC. The proof of supB = supC is then achieved by
swapping x and z.

Let an = [x+ y]n + [z]n, cn = [x]n + [y]n + [z]n. Notice that an ≥ cn. Indeed, by definition
of x + y we have x + y ≥ [x]n + [y]n. Therefore, [x + y]n ≥ [[x]n + [y]n]n (this follows from
the definition of comparison of real numbers; it is important that we do not use decimal
representations of the form x0.x1 . . . xn999 . . . ). But the number [x]n + [y]n has at most n
digits after the decimal point. Therefore, [[x]n + [y]n]n = [x]n + [y]n, proving that an ≥ cn.

Now, since A = {an | n ∈ Z, n ≥ 0}, C = {cn | n ∈ Z, n ≥ 0}, and an ≥ cn, it follows that
sup A ≥ sup C (check this).

Further, it is easy to see that for any positive real number w and any positive integers
m,n, one has [w]m ≤ [w]n + 10−n. Therefore, [x]m + [y]m ≤ [x]n + [y]n + 2 · 10−n, and it
follows that for x + y, defined as the supremum of the left-hand side over all m’s, we have
x+ y ≤ [x]n + [y]n + 2 · 10−n for any positive integer n. Thus, [x+ y]n ≤ [x]n + [y]n + 2 · 10−n,
i.e., an ≤ cn + 2 · 10−n.

So, since A = {an | n ∈ Z, n ≥ 0}, C = {cn | n ∈ Z, n ≥ 0}, and an ≤ cn + 2 · 10−n, it
follows that sup A ≤ sup C (check this). Now we know that sup A ≥ sup C and sup A ≤
sup C. So, sup A = sup C, as desired.

Problem 2. Show that the following definition of x + y is equivalent to the above:

x + y = sup {[x]n + [y]m | m,n ∈ Z,m, n ≥ 0}.

Solution: Let A = {[x]n + [y]n | n ∈ Z, n ≥ 0}, B = {[x]n + [y]m | m,n ∈ Z,m, n ≥ 0}.
We need to show that supA = supB (both sets are non-empty and bounded above, e.g., by
[x]0 + [y]0 + 2, so these supremums are well-defined.) We use the following lemma.

Lemma. Let A,B ⊂ R be non-empty bounded above sets satysfying the following
conditions:



1. For any a ∈ A, there exists b ∈ B such that b ≥ a.

2. For any b ∈ B, there exists a ∈ A, such that a ≥ b.

Then supA = supB.

Proof of the lemma.
I Take any a ∈ A. Then there exists b ∈ B such that b ≥ a. But since b ≤ supB, it

follows that a ≤ supB. So supB is an upper bound for A, and it follows that supB ≥ supA.
Analogously, one proves that supA is an upper bound for B, so supB ≥ supA. We conclude
that supA = supB, as desired. J

Now, it suffices to show that our sets A and B satisfy the conditions of the lemma. The
first condition (for any a ∈ A, there exists b ∈ B such that b ≥ a) is obvious, since A ⊂ B,
and we can take b = a. So, we only need to verify the second condition (for any b ∈ B,
there exists a ∈ A, such that a ≥ b). Take any b ∈ B. Then b = [x]n + [y]m, where m, n
are non-negative integers. Let k = max(m,n). Then we have [x]k ≥ [x]n and [y]k ≥ [y]m, so
[x]k + [y]k ≥ b. Since, [x]k + [y]k ∈ A, this ends the proof.
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