
MAT337H1, Introduction to Real Analysis: Solutions to Exercise J for Section
2.4 and Exercises C and J for Section 2.5

Exercise J for Section 2.4. Let a0, a1 be positive real numbers, and set

an+2 =
√
an+1 +

√
an

for n ≥ 0.

(a) Show that there is N such that an ≥ 1 for all n ≥ N .

(b) Let εn = |an − 4|. Show that εn+2 ≤ 1
3
(εn+1 + εn) for n ≥ N .

(c) Prove that the sequence an converges.

Solution. (a) We first show that there exists n such that an ≥ 1. Assume, for the sake of
contradiction, that an < 1 for any n. Then the sequence an is bounded above. Furthermore,
we have

an+2 =
√
an+1 +

√
an ≥

√
an+1 > an+1,

meaning that the sequence a2, a3, . . . is increasing. So, this sequence converges by the mono-
tone converges theorem. Let a be its limit. Then for any ε > 0 there exists k such that
an > a− ε for any n ≥ k. In particular, we have ak > a− ε, ak+1 > a− ε. Therefore,

ak+2 =
√
ak+1 +

√
ak > 2

√
a− ε.

Further, notice that since an < 1 for every n, we have a ≤ 1 (see, e.g., Exercise C for Section
2.4). So,

ak+2 > 2
√
a− ε > 2(a− ε).

Choosing ε = 1
2
a (we can take such ε because a > 0), we get

ak+2 > 2(a− ε) = a.

But this is impossible, since an is an increasing sequence, which implies

sup{an} = lim
n→∞

an = a.

So, our assumption is wrong, and there exists n such that an ≥ 1. But then

an+2 =
√
an+1 +

√
an ≥

√
an ≥ 1.

Proceeding by induction, one can show that ak ≥ 1 for k ≥ n+2. So, one can take N = n+2.

(b) For n ≥ N , we have

εn+2 = |an+2 − 4| = |√an+1 +
√
an − 4| = |(√an+1 − 2) + (

√
an − 2)| ≤ |√an+1 − 2|

+|
√
an − 2| = |an+1 − 4|

√
an+1 + 2

+
|an − 4|
√
an + 2

≤ |an+1 − 4|
3

+
|an − 4|

3
=

1

3
(εn+1 + εn),

where we used that an, an+1 ≥ 1 and hence
√
an + 2,

√
an+1 + 2 ≥ 3.



(c) We first show that limn→∞ εn = 0. Let δ1 = max(ε1, ε2), δ2 = max(ε3, ε4), etc. In
general, we have δn = max(ε2n−1, ε2n). Then, provided that 2n− 1 ≥ N , we have

ε2n+1 ≤
1

3
(ε2n + ε2n−1) ≤

1

3
(max(ε2n, ε2n−1) + max(ε2n, ε2n−1)) =

2

3
max(ε2n, ε2n−1) =

2

3
δn,

and

ε2n+2 ≤
1

3
(ε2n+1 + ε2n) ≤ 1

3

(
2

3
δn + max(ε2n, ε2n−1)

)
=

5

9
δn ≤

2

3
δn.

So, for 2n− 1 ≥ N , we have

δn+1 = max(ε2n+1, ε2n+2) ≤
2

3
δn.

From the latter it follows that limn→∞ δn = 0 (check this). So, the limit of the sequence
δ1, δ1, δ2, δ2, δ3, δ3, . . . is also 0. At the same time, the terms of this sequence estimate the
terms of the sequence εn from above. So, limn→∞ εn = 0 by the squeeze theorem (where we
also use that εn ≥ 0). Further,

−εn ≤ an − 4 ≤ εn,

so limn→∞(an − 4) = 0 also by the squeeze theorem. Thus, limn→∞ an = 4.

Exercise C for Section 2.5. If limn→∞ an = L > 0, prove that limn→∞
√
an =

√
L.

Solution. We are given that limn→∞ an = L > 0. We first show that there exists N0 ∈ Z
such that if n ∈ Z and n ≥ M , then an > 0. By definition of limit, we have that for any
ε > 0 there exists N(ε) such that

|an − L| < ε for n ≥ N(ε). (1)

Applying this for ε = L, we get that for any n ≥ N(L) one has |an − L| < L. The latter, in
particular, means that an > 0. So, N(L) is the desired N0.

Since an > 0 for n sufficiently large,
√
an makes sense. Although the first few terms of

the latter sequence may be undefined, it still makes sense to discuss its limit.
Now we show that

√
an →

√
L. For this we need to show that for any δ > 0 there exists

N ′(δ) such that

|
√
an −

√
L| < ε for n ≥ N ′(δ). (2)

(Here one should have N ′(δ) ≥ N0, so that
√
an is well-defined.) We fix δ > 0 and find the

number N ′(δ). For any n ≥ N0, we have

|
√
an −

√
L| = |an − L|

√
an +

√
L
≤ |an − L|√

L
.

Further, applying (1) for ε = δ
√
L, we get that |an − L| < δ

√
L for n ≥ N(δ

√
L). So, for

such numbers n, we have

|
√
an −

√
L| ≤ |an − L|√

L
< δ,

provided that
√
an is well-defined. This means that as N ′(δ) one can take any number N

such that N ≥ N(δ
√
L) and N ≥ N0. For example, one can take N ′(δ) = max(N(δ

√
L), N0).

So, for any δ > 0 we found N ′(δ) satisfying (2), meaning that limn→∞
√
an =

√
L.
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Exercise J for Section 2.5. Show that the set S = {n + m
√

2 | m,n ∈ Z} is dense in
R.

Solution. Let S+ = {x ∈ S | x > 0}. Since the set S+ is non-empty and bounded below
(by 0), it has a greatest lower bound.

Lemma. inf S+ = 0.

I Let a = inf S+. Since 0 is a lower bound for S+, we have a ≥ 0. Assume that a > 0.
Then there are two possible cases: either a /∈ S+, or a ∈ S+. In the first case, since a is
the greatest lower bound, we have that for any b > a there exists x ∈ S+ such that x < b
(otherwise b would be a lower bound for S+ greater than a). Taking b = 2a, we find x1 ∈ S+

such that x1 < 2a. Further, taking b = x1 (notice that x1 > a since a /∈ S+), we find x2 ∈ S+

such that x2 < x1. Then
a < x2 < x1 < 2a.

Notice that since x1, x2 ∈ S, we have x2 − x1 ∈ S. (This follows from the definition of S:
since x1, x2 ∈ S, we have x1 = n1 + m1

√
2, x2 = n2 + m2

√
2, where m1, n1,m2, n2 ∈ Z, so

x2− x1 = (n1 +m1

√
2)− (n2 +m2

√
2) = (n2− n1) + (m2−m1)

√
2 ∈ S). Furthermore, since

x2 > x1, we in fact have x2−x1 ∈ S+. But x2−x1 < a, showing that a is not a lower bound,
which is a contradiction.

Now we consider the case a ∈ S+. In this case, it follows from the definition of S that
na ∈ S for any n ∈ Z. Moreover, there are no other elements in S. Indeed if x ∈ S is not
of the form na, where n ∈ Z, then it lies in the certain interval of the form (na, (n + 1)a),
where n ∈ Z. But then x − na < a, and x − na ∈ S+, which contradicts a being a lower
bound for S+. So, we must have S = {na | n ∈ Z}. This, in particular, means that 1 = na
and
√

2 = ma for certain integers m,n. But then

√
2 =

√
2

1
=
ma

na
=
m

n
,

which is impossible, since
√

2 is irrational. So, our assumption a > 0 is false, meaning that
a = 0. J

Now we show that S is dense in R. Take any x ∈ R. We need to construct a sequence
xn ∈ S such that limn→∞ xn = x. It follows from the Lemma that for any integer n > 0 we
can find an ∈ S+ such that an <

1
n
. Consider the set of numbers of the form man,m ∈ Z.

These numbers partition the real line into intervals of length an, which is less than 1
n
. The

number x lies in one of these intervals. This means that there exists m ∈ Z such that

man ≤ x ≤ (m+ 1)an.

In particular, we have
|x− xn| ≤ |(m+ 1)an −man| = an.

Set xn = man. Doing this for every positive integer n, we obtain a sequence xn. By
construction, we have xn ∈ S. (Here we use that an ∈ S ⇒ man ∈ S for any m ∈ Z.)
Furthermore, we have |x− xn| ≤ an, also by construction. So, |x− xn| < 1

n
. But this imples

limn→∞ xn = x (e.g., by the squeeze theorem), as desired.
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