MAT337H1, Introduction to Real Analysis: Solutions to Exercise J for Section
2.4 and Exercises C and J for Section 2.5

Exercise J for Section 2.4. Let ag, a; be positive real numbers, and set

Qp+42 = /OQn+1 + VvV an
for n > 0.

(a) Show that there is N such that a, > 1 for all n > N.
(b) Let &,, = |a, — 4|. Show that €, 19 < %(enﬂ +e¢,) forn > N.

(¢) Prove that the sequence a,, converges.

Solution. (a) We first show that there exists n such that a,, > 1. Assume, for the sake of
contradiction, that a,, < 1 for any n. Then the sequence a,, is bounded above. Furthermore,

we have
Ap+42 = \/OGn+1 + VvV an > vV An+1 > QApid,

meaning that the sequence as, as, ... is increasing. So, this sequence converges by the mono-
tone converges theorem. Let a be its limit. Then for any € > 0 there exists k& such that
a, > a — ¢ for any n > k. In particular, we have a; > a — ¢, ayr1 > a — €. Therefore,

Qpro = \/Qp+1 + Var > 2/ a — €.

Further, notice that since a,, < 1 for every n, we have a < 1 (see, e.g., Exercise C for Section
2.4). So,

a2 > 2v/a —e > 2(a —¢).
1

Choosing ¢ = 5a (we can take such € because a > 0), we get

a2 > 2(a —¢€) = a.
But this is impossible, since a,, is an increasing sequence, which implies
sup{a,} = nh_{go a, = a.
So, our assumption is wrong, and there exists n such that a, > 1. But then
nt2 = /et + V/n 2 Van 2 1.
Proceeding by induction, one can show that ay > 1 for £ > n+2. So, one can take N = n+2.

(b) For n > N, we have

e = ltnsr — 4 = |Vt + Van — 4 = | (yans1 — 2) + (Van — 2)| < [/ - 2
Ape1 — 4 a, —4 Ape1 — 4 a, — 4 1
+|\/a_n—2|=| o4 | Jonn =4 | e +en)

Vo1 +2  Ja,+2 3 3 3

where we used that a,,a,,; > 1 and hence \/a, + 2, \/a,. 1 +2 > 3.




(c) We first show that lim, ,, &, = 0. Let ; = max(ey,e5), do = max(e3,e4), etc. In
general, we have §,, = max(e9,_1,€2,). Then, provided that 2n — 1 > N, we have

1 1 2 2
Em+1 < g(fzn + €on-1) < g(max(ﬁzn,@n_ﬂ + max(eon, E2n-1)) = gmaX(SZ’man—l) = 35,“
and 1 1/2 5) 2
Eon+2 S §(€2n+1 + 62n) S § <§6n + max(€2n;€2n—1)) = §5n S g(sn

So, for 2n — 1 > N, we have

On.

W o

Op+1 = max(an41, Eanta) <

From the latter it follows that lim, ,, 0, = 0 (check this). So, the limit of the sequence
01,01, 09,09, 03,03, ... is also 0. At the same time, the terms of this sequence estimate the
terms of the sequence ¢, from above. So, lim, . &, = 0 by the squeeze theorem (where we
also use that €, > 0). Further,

—n<a,—4<e¢e,,

so lim,, o (a, —4) = 0 also by the squeeze theorem. Thus, lim,,_, a, = 4.

Exercise C for Section 2.5. If lim,_ . a, = L > 0, prove that lim,,_,c v/@, = VL.

Solution. We are given that lim,,_,,, a, = L > 0. We first show that there exists Ny € Z
such that if n € Z and n > M, then a, > 0. By definition of limit, we have that for any
e > 0 there exists N(¢) such that

la, — L] < e for n > N(e). (1)

Applying this for e = L, we get that for any n > N(L) one has |a, — L| < L. The latter, in
particular, means that a,, > 0. So, N(L) is the desired Nj.
Since a,, > 0 for n sufficiently large, \/a, makes sense. Although the first few terms of
the latter sequence may be undefined, it still makes sense to discuss its limit.
Now we show that /a, — V/L. For this we need to show that for any § > 0 there exists
N’(9) such that
|Van — VL| < £ for n. > N'(6). (2)

(Here one should have N'(6) > Ny, so that \/a, is well-defined.) We fix § > 0 and find the
number N'(0). For any n > Ny, we have

la, — L| |a, — L|
< .

|@_\/Z|:\/a_n+ﬁ_ VL

Further, applying (1) for ¢ = §v/L, we get that |a, — L| < 6v/L for n > N(6v/L). So, for
such numbers n, we have
|an — L|
Va, — VI < =" <,
| | VL

provided that \/a, is well-defined. This means that as N’(J) one can take any number N
such that N > N(6v/L) and N > Ny. For example, one can take N'(§) = max(N(5v/'L), Ny).
So, for any § > 0 we found N’(§) satisfying (2), meaning that lim,,_,« \/a@, = v/L.
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Exercise J for Section 2.5. Show that the set S = {n +m+/2 | m,n € Z} is dense in
R.

Solution. Let S, = {z € S|z > 0}. Since the set S, is non-empty and bounded below
(by 0), it has a greatest lower bound.

Lemma. inf S = 0.

» Let a = infS,. Since 0 is a lower bound for S, we have a > 0. Assume that a > 0.
Then there are two possible cases: either a ¢ S,, or a € S,. In the first case, since a is
the greatest lower bound, we have that for any b > a there exists x € S, such that z < b
(otherwise b would be a lower bound for S, greater than a). Taking b = 2a, we find z; € S
such that z; < 2a. Further, taking b = 1 (notice that x; > a since a ¢ S, ), we find 25 € S
such that x5 < x1. Then

a < x9 <21 < 2a.

Notice that since xq,x9 € S, we have 9 — 27 € S. (This follows from the definition of S:
since x1,r9 € S, we have 1 = nq + m1\/§, To = Ny + mgx/z where mq,nq1, ma, ny € Z, so
Ty — 21 = (N1 +mM1V2) — (ng +mev/2) = (ng — ny) + (mg —my)v/2 € S). Furthermore, since
g9 > x1, we in fact have o —x1 € Sy. But x5 — 21 < a, showing that a is not a lower bound,
which is a contradiction.

Now we consider the case a € S;. In this case, it follows from the definition of S that
na € S for any n € Z. Moreover, there are no other elements in S. Indeed if x € S is not
of the form na, where n € Z, then it lies in the certain interval of the form (na, (n + 1)a),
where n € Z. But then © — na < a, and x — na € S, which contradicts a being a lower
bound for S;. So, we must have S = {na | n € Z}. This, in particular, means that 1 = na
and /2 = ma for certain integers m,n. But then

ﬁ:?:@:@

na

Y

which is impossible, since v/2 is irrational. So, our assumption a > 0 is false, meaning that
a=0. «

Now we show that S is dense in R. Take any z € R. We need to construct a sequence
x, € S such that lim,_,. x, = x. It follows from the Lemma that for any integer n > 0 we
can find a, € S, such that a, < % Consider the set of numbers of the form ma,,m € Z.
These numbers partition the real line into intervals of length a,,, which is less than % The
number x lies in one of these intervals. This means that there exists m € Z such that

ma, <z < (m+ 1)a,.

In particular, we have
|z — x,| < [(m+ 1)a, — may,| = a,.

Set z, = ma,. Doing this for every positive integer n, we obtain a sequence z,. By
construction, we have z, € S. (Here we use that a, € S = ma, € S for any m € Z.)
Furthermore, we have |z — x,| < a,, also by construction. So, |z — x,| < % But this imples
lim,, o x, = x (e.g., by the squeeze theorem), as desired.



