MAT337H1, Introduction to Real Analysis: Solutions to Exercise J for Section 2.4 and Exercises C and J for Section 2.5

Exercise J for Section 2.4. Let a_{0}, a_{1} be positive real numbers, and set

$$
a_{n+2}=\sqrt{a_{n+1}}+\sqrt{a_{n}}
$$

for $n \geq 0$.
(a) Show that there is N such that $a_{n} \geq 1$ for all $n \geq N$.
(b) Let $\varepsilon_{n}=\left|a_{n}-4\right|$. Show that $\varepsilon_{n+2} \leq \frac{1}{3}\left(\varepsilon_{n+1}+\varepsilon_{n}\right)$ for $n \geq N$.
(c) Prove that the sequence a_{n} converges.

Solution. (a) We first show that there exists n such that $a_{n} \geq 1$. Assume, for the sake of contradiction, that $a_{n}<1$ for any n. Then the sequence a_{n} is bounded above. Furthermore, we have

$$
a_{n+2}=\sqrt{a_{n+1}}+\sqrt{a_{n}} \geq \sqrt{a_{n+1}}>a_{n+1},
$$

meaning that the sequence a_{2}, a_{3}, \ldots is increasing. So, this sequence converges by the monotone converges theorem. Let a be its limit. Then for any $\varepsilon>0$ there exists k such that $a_{n}>a-\varepsilon$ for any $n \geq k$. In particular, we have $a_{k}>a-\varepsilon, a_{k+1}>a-\varepsilon$. Therefore,

$$
a_{k+2}=\sqrt{a_{k+1}}+\sqrt{a_{k}}>2 \sqrt{a-\varepsilon}
$$

Further, notice that since $a_{n}<1$ for every n, we have $a \leq 1$ (see, e.g., Exercise C for Section 2.4). So,

$$
a_{k+2}>2 \sqrt{a-\varepsilon}>2(a-\varepsilon) .
$$

Choosing $\varepsilon=\frac{1}{2} a$ (we can take such ε because $a>0$), we get

$$
a_{k+2}>2(a-\varepsilon)=a
$$

But this is impossible, since a_{n} is an increasing sequence, which implies

$$
\sup \left\{a_{n}\right\}=\lim _{n \rightarrow \infty} a_{n}=a
$$

So, our assumption is wrong, and there exists n such that $a_{n} \geq 1$. But then

$$
a_{n+2}=\sqrt{a_{n+1}}+\sqrt{a_{n}} \geq \sqrt{a_{n}} \geq 1 .
$$

Proceeding by induction, one can show that $a_{k} \geq 1$ for $k \geq n+2$. So, one can take $N=n+2$.
(b) For $n \geq N$, we have

$$
\begin{aligned}
\varepsilon_{n+2}= & \left|a_{n+2}-4\right|=\left|\sqrt{a_{n+1}}+\sqrt{a_{n}}-4\right|=\left|\left(\sqrt{a_{n+1}}-2\right)+\left(\sqrt{a_{n}}-2\right)\right| \leq\left|\sqrt{a_{n+1}}-2\right| \\
& +\left|\sqrt{a_{n}}-2\right|=\frac{\left|a_{n+1}-4\right|}{\sqrt{a_{n+1}}+2}+\frac{\left|a_{n}-4\right|}{\sqrt{a_{n}}+2} \leq \frac{\left|a_{n+1}-4\right|}{3}+\frac{\left|a_{n}-4\right|}{3}=\frac{1}{3}\left(\varepsilon_{n+1}+\varepsilon_{n}\right),
\end{aligned}
$$

where we used that $a_{n}, a_{n+1} \geq 1$ and hence $\sqrt{a_{n}}+2, \sqrt{a_{n+1}}+2 \geq 3$.
(c) We first show that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. Let $\delta_{1}=\max \left(\varepsilon_{1}, \varepsilon_{2}\right), \delta_{2}=\max \left(\varepsilon_{3}, \varepsilon_{4}\right)$, etc. In general, we have $\delta_{n}=\max \left(\varepsilon_{2 n-1}, \varepsilon_{2 n}\right)$. Then, provided that $2 n-1 \geq N$, we have

$$
\varepsilon_{2 n+1} \leq \frac{1}{3}\left(\varepsilon_{2 n}+\varepsilon_{2 n-1}\right) \leq \frac{1}{3}\left(\max \left(\varepsilon_{2 n}, \varepsilon_{2 n-1}\right)+\max \left(\varepsilon_{2 n}, \varepsilon_{2 n-1}\right)\right)=\frac{2}{3} \max \left(\varepsilon_{2 n}, \varepsilon_{2 n-1}\right)=\frac{2}{3} \delta_{n}
$$

and

$$
\varepsilon_{2 n+2} \leq \frac{1}{3}\left(\varepsilon_{2 n+1}+\varepsilon_{2 n}\right) \leq \frac{1}{3}\left(\frac{2}{3} \delta_{n}+\max \left(\varepsilon_{2 n}, \varepsilon_{2 n-1}\right)\right)=\frac{5}{9} \delta_{n} \leq \frac{2}{3} \delta_{n}
$$

So, for $2 n-1 \geq N$, we have

$$
\delta_{n+1}=\max \left(\varepsilon_{2 n+1}, \varepsilon_{2 n+2}\right) \leq \frac{2}{3} \delta_{n}
$$

From the latter it follows that $\lim _{n \rightarrow \infty} \delta_{n}=0$ (check this). So, the limit of the sequence $\delta_{1}, \delta_{1}, \delta_{2}, \delta_{2}, \delta_{3}, \delta_{3}, \ldots$ is also 0 . At the same time, the terms of this sequence estimate the terms of the sequence ε_{n} from above. So, $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ by the squeeze theorem (where we also use that $\varepsilon_{n} \geq 0$). Further,

$$
-\varepsilon_{n} \leq a_{n}-4 \leq \varepsilon_{n}
$$

so $\lim _{n \rightarrow \infty}\left(a_{n}-4\right)=0$ also by the squeeze theorem. Thus, $\lim _{n \rightarrow \infty} a_{n}=4$.
Exercise C for Section 2.5. If $\lim _{n \rightarrow \infty} a_{n}=L>0$, prove that $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{L}$.
Solution. We are given that $\lim _{n \rightarrow \infty} a_{n}=L>0$. We first show that there exists $N_{0} \in \mathbb{Z}$ such that if $n \in \mathbb{Z}$ and $n \geq M$, then $a_{n}>0$. By definition of limit, we have that for any $\varepsilon>0$ there exists $N(\varepsilon)$ such that

$$
\begin{equation*}
\left|a_{n}-L\right|<\varepsilon \text { for } n \geq N(\varepsilon) . \tag{1}
\end{equation*}
$$

Applying this for $\varepsilon=L$, we get that for any $n \geq N(L)$ one has $\left|a_{n}-L\right|<L$. The latter, in particular, means that $a_{n}>0$. So, $N(L)$ is the desired N_{0}.

Since $a_{n}>0$ for n sufficiently large, $\sqrt{a_{n}}$ makes sense. Although the first few terms of the latter sequence may be undefined, it still makes sense to discuss its limit.

Now we show that $\sqrt{a_{n}} \rightarrow \sqrt{L}$. For this we need to show that for any $\delta>0$ there exists $N^{\prime}(\delta)$ such that

$$
\begin{equation*}
\left|\sqrt{a_{n}}-\sqrt{L}\right|<\varepsilon \text { for } n \geq N^{\prime}(\delta) \tag{2}
\end{equation*}
$$

(Here one should have $N^{\prime}(\delta) \geq N_{0}$, so that $\sqrt{a_{n}}$ is well-defined.) We fix $\delta>0$ and find the number $N^{\prime}(\delta)$. For any $n \geq N_{0}$, we have

$$
\left|\sqrt{a_{n}}-\sqrt{L}\right|=\frac{\left|a_{n}-L\right|}{\sqrt{a_{n}}+\sqrt{L}} \leq \frac{\left|a_{n}-L\right|}{\sqrt{L}}
$$

Further, applying (1) for $\varepsilon=\delta \sqrt{L}$, we get that $\left|a_{n}-L\right|<\delta \sqrt{L}$ for $n \geq N(\delta \sqrt{L})$. So, for such numbers n, we have

$$
\left|\sqrt{a_{n}}-\sqrt{L}\right| \leq \frac{\left|a_{n}-L\right|}{\sqrt{L}}<\delta
$$

provided that $\sqrt{a_{n}}$ is well-defined. This means that as $N^{\prime}(\delta)$ one can take any number N such that $N \geq N(\delta \sqrt{L})$ and $N \geq N_{0}$. For example, one can take $N^{\prime}(\delta)=\max \left(N(\delta \sqrt{L}), N_{0}\right)$. So, for any $\delta>0$ we found $N^{\prime}(\delta)$ satisfying (2), meaning that $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{L}$.

Exercise J for Section 2.5. Show that the set $S=\{n+m \sqrt{2} \mid m, n \in \mathbb{Z}\}$ is dense in R.

Solution. Let $S_{+}=\{x \in S \mid x>0\}$. Since the set S_{+}is non-empty and bounded below (by 0), it has a greatest lower bound.

Lemma. $\inf S_{+}=0$.

- Let $a=\inf S_{+}$. Since 0 is a lower bound for S_{+}, we have $a \geq 0$. Assume that $a>0$. Then there are two possible cases: either $a \notin S_{+}$, or $a \in S_{+}$. In the first case, since a is the greatest lower bound, we have that for any $b>a$ there exists $x \in S_{+}$such that $x<b$ (otherwise b would be a lower bound for S_{+}greater than a). Taking $b=2 a$, we find $x_{1} \in S_{+}$ such that $x_{1}<2 a$. Further, taking $b=x_{1}$ (notice that $x_{1}>a$ since $a \notin S_{+}$), we find $x_{2} \in S_{+}$ such that $x_{2}<x_{1}$. Then

$$
a<x_{2}<x_{1}<2 a .
$$

Notice that since $x_{1}, x_{2} \in S$, we have $x_{2}-x_{1} \in S$. (This follows from the definition of S : since $x_{1}, x_{2} \in S$, we have $x_{1}=n_{1}+m_{1} \sqrt{2}, x_{2}=n_{2}+m_{2} \sqrt{2}$, where $m_{1}, n_{1}, m_{2}, n_{2} \in \mathbb{Z}$, so $\left.x_{2}-x_{1}=\left(n_{1}+m_{1} \sqrt{2}\right)-\left(n_{2}+m_{2} \sqrt{2}\right)=\left(n_{2}-n_{1}\right)+\left(m_{2}-m_{1}\right) \sqrt{2} \in S\right)$. Furthermore, since $x_{2}>x_{1}$, we in fact have $x_{2}-x_{1} \in S_{+}$. But $x_{2}-x_{1}<a$, showing that a is not a lower bound, which is a contradiction.

Now we consider the case $a \in S_{+}$. In this case, it follows from the definition of S that $n a \in S$ for any $n \in \mathbb{Z}$. Moreover, there are no other elements in S. Indeed if $x \in S$ is not of the form $n a$, where $n \in \mathbb{Z}$, then it lies in the certain interval of the form $(n a,(n+1) a)$, where $n \in \mathbb{Z}$. But then $x-n a<a$, and $x-n a \in S_{+}$, which contradicts a being a lower bound for S_{+}. So, we must have $S=\{n a \mid n \in \mathbb{Z}\}$. This, in particular, means that $1=n a$ and $\sqrt{2}=m a$ for certain integers m, n. But then

$$
\sqrt{2}=\frac{\sqrt{2}}{1}=\frac{m a}{n a}=\frac{m}{n}
$$

which is impossible, since $\sqrt{2}$ is irrational. So, our assumption $a>0$ is false, meaning that $a=0$.

Now we show that S is dense in \mathbb{R}. Take any $x \in \mathbb{R}$. We need to construct a sequence $x_{n} \in S$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. It follows from the Lemma that for any integer $n>0$ we can find $a_{n} \in S_{+}$such that $a_{n}<\frac{1}{n}$. Consider the set of numbers of the form $m a_{n}, m \in \mathbb{Z}$. These numbers partition the real line into intervals of length a_{n}, which is less than $\frac{1}{n}$. The number x lies in one of these intervals. This means that there exists $m \in \mathbb{Z}$ such that

$$
m a_{n} \leq x \leq(m+1) a_{n}
$$

In particular, we have

$$
\left|x-x_{n}\right| \leq\left|(m+1) a_{n}-m a_{n}\right|=a_{n} .
$$

Set $x_{n}=m a_{n}$. Doing this for every positive integer n, we obtain a sequence x_{n}. By construction, we have $x_{n} \in S$. (Here we use that $a_{n} \in S \Rightarrow m a_{n} \in S$ for any $m \in \mathbb{Z}$.) Furthermore, we have $\left|x-x_{n}\right| \leq a_{n}$, also by construction. So, $\left|x-x_{n}\right|<\frac{1}{n}$. But this imples $\lim _{n \rightarrow \infty} x_{n}=x$ (e.g., by the squeeze theorem), as desired.

