MAT337H1, Introduction to Real Analysis: additional recommended problems for Jan 27 class

1. Suppose that $I_{n}=\left(a_{n}, b_{n}\right)=\left\{x \in \mathbb{R} \mid a_{n}<x<b_{n}\right\}$ are non-empty open intervals such that $I_{n+1} \subseteq I_{n}$ for every $n \geq 1$ (i.e. I_{n+1} is a subset of I_{n}, possibly coinciding with I_{n} itself). Is it true that the intersection $\bigcap_{n \geq 1} I_{n}$ must be non-empty? Is it true that finite intersections $\bigcap_{n=1}^{N} I_{n}$ are non-empty?
Remark: In mathematical literature, $A \subset B$ does not always mean strict inclusion, i.e. one can write that $A \subset B$ even if $A=B$. So, the meaning of $A \subset B$ and $A \subseteq B$ is often the same. To emphasize that $A \subset B$ but $A \neq B$, one can write $A \subsetneq B$ or say that A is a proper subset of B.
Since $A \subset B$ means different things in different sources, one should be careful when using this notation.
2. Suppose that $I_{n}=\left[a_{n}, b_{n}\right]=\left\{x \in \mathbb{R} \mid a_{n} \leq x \leq b_{n}\right\}$ are non-empty closed intervals such that $I_{n+1} \subseteq I_{n}$ for every $n \geq 1$. Let also l_{n} be the length of the interval I_{n}, i.e. $l_{n}=b_{n}-a_{n}$. Prove the following.
(a) The sequence l_{n} converges.
(b) If $\lim _{n \rightarrow \infty} l_{n}=0$, then the set $\bigcap_{n \geq 1} I_{n}$ consists of one element.
(c) If $\lim _{n \rightarrow \infty} l_{n} \neq 0$, then the set $\bigcap_{n \geq 1} I_{n}$ is infinite.
