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Exercises D. Show that every sequence has a monotone subsequence.

Solution. Let an be a sequence (of real numbers). We need to show that it has a
monotone subsequence. First assume that the sequence an is bounded. Then, by Bolzano-
Weierstrass theorem, an has a convergent subsequence, which we call bn. Now we show that
bn has a monotone subsequence. Let L be the limit of bn. Notice that if bn has infinitely
many terms equal to L, then we are done: L,L, . . . is a monotone subsequence of an. So,
we may assume that only finitely many terms of bn are equal to L. Then either there are
infinitely many terms satisfying bn > L, or there are infinitely many terms satisfying bn < L
(maybe both). We consider the first case. The second one is completely analogous. Take
any term of bn greater than L and call it c1. Take ε = (c1−L)/2. Then, since bn → L, there
are only finitely many terms of bn outside the ε-neighborhood of L. At the same time, there
are infinitely many terms satisfying bn > L. So, there must be infinitely many terms of bn
between L and L + ε. Take one of them and call it c2. Notice that c2 < L + ε < c1. Then
take ε = (c2 − L)/2 and repeat the procedure. This gives c3 < c2. Continuing this, we get a
decreasing subsequence of the sequence an, as desired.

Now, assume that an is not bounded. Then it must be unbounded either from above, or
from below (maybe both). We consider the case when it is unbounded above. The other case
is analogous. Take any term of the sequence an and call it c1. Then there is another term of
an which is larger than c1: otherwise, c1 would be an upper bound for an. Take this larger
term and call it c2. Continuing this procedure, we get an increasing subsequence of an, as
desired.

Question 2 from the PDF file. Suppose that In = [an, bn] = {x ∈ R | an ≤ x ≤ bn}
are non-empty closed intervals such that In+1 ⊆ In for every n ≥ 1. Let also ln be the length
of the interval In, i.e. ln = bn − an. Prove the following.

(a) The sequence ln converges.

(b) If limn→∞ ln = 0, then the set
⋂

n≥1 In consists of one element.

(c) If limn→∞ ln 6= 0, then the set
⋂

n≥1 In is infinite.

Solution.
(a) Since In+1 ⊆ In , we have ln+1 ≤ ln. So, the sequence ln is non-increasing and bounded

below (by 0). Therefore, it is convergent (by the monotone convergence theorem).

(b) The set
⋂

n≥1 In is non-empty by the nested intervals lemma. So, to show that it
consists of one element, it suffices to prove that it cannot consist of more than one element.
Assume the contrary, i.e. that there are x, y ∈

⋂
n≥1 In such that x 6= y. Then, by definition

of intersection, we have x, y ∈ In for any integer n ≥ 1. But this implies ln ≥ |x − y| > 0,
which is not possible since limn→∞ ln = 0. So, our assumption is false, and the set

⋂
n≥1 In

consists of exactly one element.

(c) The sequence an is non-decreasing and bounded above (by b1), so it is convergent.
Analogously, bn is non-increasing and bounded below, so it is convergent as well. Furthermore,
we have

lim
n→∞

bn − lim
n→∞

an = lim
n→∞

ln > 0. (1)



Also notice that since an is non-increasing, we have limn→∞ an = sup{an}. (See the proof of
the monotone convergence theorem.) Analogously, limn→∞ bn = inf{bn}. So, by (1), we have
inf{bn} > sup{an}. Now take any real number x such that

inf{bn} ≥ x ≥ sup{an}.

(There are infinitely many such real numbers.) Then, since x ≥ sup{an}, we have that x ≥ an
for any positive integer n. Analogously, x ≤ bn. So, x ∈ In for every n, which means that
x ∈

⋂
n≥1 In. So, the latter intersection contains infinitely many elements. (In fact, one has⋂

n≥1 In = [sup{an}, inf{bn}]).
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