MAT337H1, Introduction to Real Analysis: additional recommended problems for Mar 1 class

1. Prove the following fact which we used in the proof of Fermat's theorem. Let f be a function defined in all points of an interval (a, b) except, possibly, one point $x_{0} \in(a, b)$. Assume also that f changes sign at x_{0}. Further, assume that there exists a limit $\lim _{x \rightarrow x_{0}} f(x)$. Then $\lim _{x \rightarrow x_{0}} f(x)=0$.
2. Let $p(x)$ be a polynomial of degree n. Assume that $p(x)$ has n real roots, counting with multiplicities. Prove that the polynomial $p^{\prime}(x)$ has $n-1$ real roots, counting with multiplicities.
3. Let $p(x)=a x^{3}+b x^{2}+c x+d$ be a polynomial of degree 3 with leading coefficient $a>0$. Show that the following conditions are equivalent:
(a) p has three distinct real roots;
(b) p^{\prime} has two distinct real roots $x_{1}<x_{2}$ that satisfy $p\left(x_{1}\right)>0$ and $p\left(x_{2}\right)<0$.

Hence determine the number of real roots of the polynomial $x^{3}-x+1$.

