MAT337H1, Introduction to Real Analysis: recommended problems for Mar 17 class

1. Show, using the definition of the Riemann integral in terms of partitions (and not using the fundamental theorem of calculus) that

$$
\int_{a}^{b} \frac{1}{x} d x=\int_{k a}^{k b} \frac{1}{x} d x
$$

for any positive numbers a, b, k.
2. For $x>0$, define a function $\ln (x)$ by the formula

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t .
$$

Show, using this definition, that $\ln (x y)=\ln (x)+\ln (y)$. Hence show that \ln is a bijection from positive numbers to all real numbers.
3. Define a function exp from real numbers to positive real numbers as the inverse of the function \ln. Show that $\exp ^{\prime}=\exp$.
4. The functions \ln and exp provide us with an easy way to define x^{y} even when y is irrational. Namely, for positive x and any real y we set $x^{y}=\exp (y \ln x)$. Show that for rational y this coincides with our earlier definition $x^{\frac{m}{n}}=\sqrt[n]{x^{m}}$.

