
MAT337H1, Introduction to Real Analysis: solutions to additional
recommended problems for Mar 1 class

1. Prove the following fact which we used in the proof of Fermat’s theorem. Let f be a
function defined in all points of an interval (a, b) except, possibly, one point x0 ∈ (a, b).
Assume also that f changes sign at x0. Further, assume that there exists a limit
limx→x0 f(x). Then limx→x0 f(x) = 0.

Solution. Assume that limx→x0 f(x) = L 6= 0. Taking |L| as ε in the definition of the
limit, we get that there is δ > 0 such that for any x satisfying 0 < |x− x0| < δ we have
|f(x) − L| < |L| (i.e. the distance from f(x) to L is less than the distance from L to
0). From the latter it follows that for x satisfying 0 < |x − x0| < δ the function f(x)
has the same sign as L, which contradicts f(x) changing sign at x0. So, we must have
limx→x0 f(x) = 0.

2. Let p(x) be a polynomial of degree n. Assume that p(x) has n real roots, counting
with multiplicities. Prove that the polynomial p′(x) has n− 1 real roots, counting with
multiplicities.

Solution. Let f(x) be an arbitrary polynomial having root a of multiplicity m. This
means that f(x) can be divided by (x− a) exactly m times, i.e., f(x) = (x− a)mg(x),
where g(x) is a polynomial such that g(a) 6= 0. Differentiating, we get f ′(x) = m(x−
a)m−1g(x) + (x− a)mg′(x) = (x− a)m−1(mg(x) + (x− a)g′(x)). The second factor does
not vanish at a, so f ′(x) has root a of multiplicity m − 1. (In particular, if m = 1,
then a is a root of multiplicity 0, i.e., not a root of f ′(x).) So, differentiation reduces
multiplicity by 1.

Now, let x1 < x2 < · · · < xk−1 < xk be the roots of p(x), and let m1, . . . ,mk be
their multiplicities. We are given that m1 + · · · + mk = n. For the derivative p′(x),
these roots have multiplicities m1 − 1, . . . ,mk − 1. We have (m1 − 1) + · · · + (mk −
1) = n − k, so we need to find k − 1 more roots of p′(x). This is done using Rolle’s
theorem. From this theorem it follows that p′(x) has a root in each of the k−1 intervals
(x1, x2), . . . , (xk−1, xk). So, there are n− k (counting with multiplicities) roots of p′(x)
that are also roots of p(x), and k − 1 roots given by Rolle’s theorem. All together, we
get n− 1 roots, as desired.

3. Let p(x) = ax3 +bx2 +cx+d be a polynomial of degree 3 with leading coefficient a > 0.
Show that the following conditions are equivalent:

(a) p has three distinct real roots;

(b) p′ has two distinct real roots x1 < x2 that satisfy p(x1) > 0 and p(x2) < 0.

Hence determine the number of real roots of the polynomial x3 − x+ 1.

Solution. We first show that there exists M > 0 such that p(x) < 0 for x < −M and
p(x) > 0 for x > M . We have

p(x) = ax3 + bx2 + cx+ d = x3(a+ by + cy2 + dy3),



where y = 1/x. The second factor (call it f(y)) is a continuous function of y taking a
positive value when y = 0. So, there is δ > 0 such that f(y) > 0 whenever |y| < δ (see
Problem 4 for Feb 10 class). In other words, f (regarded as a function of x = 1/y) is
positive when |x| > 1/δ. But this means that for |x| > 1/δ the sign of p(x) is the same
as the sign of x3, and one can take 1/δ as M .

Now, we show that (a) implies (b). Let a1 < a2 < a3 be the roots of p(x). Then,
by Rolle’s theorem, p′(x) has roots x1 ∈ (a1, a2) and x2 ∈ (a2, a3). We need to show
that p(x1) > 0 and p(x2) < 0. Notice that p(x) does not change sign in the intervals
(−∞, a1), (a1, a2), (a2, a3). (If it did change sign in one of these intervals, it would have
a zero inside this interval by the intermediate value theorem). Furthermore, all roots
of p(x) have multiplicity 1 (since a polynomial of degree 3 has at most 3 roots counting
with multiplicities), so p(x) changes sign at each of its roots. Finally, notice that since
p(x) < 0 for x < −M , we have that p(x) < 0 on (−∞, a1). Therefore, p > 0 on (a1, a2)
and p < 0 on (a2, a3). The result follows.

Further, we show that (b) implies (a). We have that p(x) < 0 for x < −M . In
particular, p(−M −1) < 0. Using also that p(x1) > 0, we conclude by the intermediate
value theorem that p has a root in (−M − 1, x1). Analogously p has a root in (x1, x2)
and a root (x2,M + 1), i.e., three distinct roots all together, as desired.

Now we apply this to p(x) = x3 − x + 1. We have p′(x) = 3x2 − 1. The roots of the
derivative are (in increasing order) x1 = −1/

√
3 and x2 = 1/

√
3. We have
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> 0,

so p(x) cannot have three distinct roots. It also does not have multiple roots, since it
does not vanish at the roots of its derivative. Further, we notice that a polynomial of
degree 3 cannot have at exactly two distinct roots of multiplicity 1. (If it does, and
these roots are, say, a and b, then dividing the polynomial by (x − a)(x − b), we find
the third root.) Finally, p(x) should have at least one root since p(x) < 0 for x < −M
and p(x) > 0 for x > M . So, p(x) has exactly one root.
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