MAT337H1, Introduction to Real Analysis: recommended problems for Mar 22 class

1. Prove the following inequalities, which we used in the proof of the triangle inequality for the uniform metric:
(a) If f, g are bounded functions on a set X, and $f(x) \leq g(x)$ for any $x \in X$, then $\sup _{X} f \leq \sup _{X} g$.
(b) If f, g are bounded functions on a set X, then $\sup _{X}(f+g) \leq \sup _{X} f+\sup _{X} g$.
2. Define a distance function on \mathbb{R}^{n} by setting

$$
\rho(x, y)=\sum_{i=1}^{n}\left|x^{i}-y^{i}\right|
$$

where x^{i} stands for the i 'th coordinate of x. Show that $\rho(x, y)$ is a metric. (This metric is called the Manhattan metric.)
3. Define a distance function on the set $C[a, b]$ of continuous functions on $[a, b]$ by setting

$$
\rho(f, g)=\int_{a}^{b}|f(x)-g(x)| d x
$$

Show that $\rho(f, g)$ is a metric. (It is called the L^{1}-metric.)
4. Let x_{n} be a sequence of points in \mathbb{R}^{m}, and let $x \in \mathbb{R}^{m}$. Show that $x_{n} \rightarrow x$ in Euclidian metric if and only if $x_{n} \rightarrow x$ in Manhattan metric. Recall that the Euclidian metric is given by

$$
\rho(x, y)=\sqrt{\sum_{i=1}^{n}\left(x^{i}-y^{i}\right)^{2}} .
$$

5. Explain why uniform convergence of a sequence of functions implies pointwise convergence. Recall that a sequence of functions $f_{n} \in C[a, b]$ is said to converge pointwise to a function $f \in C[a, b]$ if $f_{n}(x) \rightarrow f(x)$ for any $x \in X$, while uniform convergence is convergence in the metric

$$
\rho(f, g)=\sup _{[a, b]}|f-g| .
$$

6. Prove that uniform convergence implies convergence in L^{1}-metric.
7. Consider a sequence of continuous functions on $[-1,1]$ given by

$$
f_{n}(x)=\left\{\begin{array}{l}
0, \text { if } x \leq-\frac{1}{n} \\
1+n x \text { if }-\frac{1}{n}<x \leq 0 \\
1-n x \text { if } 0<x \leq \frac{1}{n} \\
0, \text { if } x>\frac{1}{n}
\end{array}\right.
$$

Show that $f_{n} \rightarrow 0$ in L^{1}-metric, but not pointwise.
8. Consider a sequence of continuous functions on $[0,1]$ given by

$$
f_{n}(x)=\left\{\begin{array}{l}
0, \text { if } x \leq 1-\frac{1}{n}, \\
n+2 n^{2}\left(x-\left(1-\frac{1}{2 n}\right)\right) \text { if } 1-1 / n<x \leq 1-\frac{1}{2 n}, \\
n-2 n^{2}\left(x-\left(1-\frac{1}{2 n}\right)\right) \text { if } 1-\frac{1}{2 n}<x \leq 1
\end{array}\right.
$$

Show that $f_{n} \rightarrow 0$ pointwise, but not in L^{1}-metric.
9. Prove that a closed interval $[a, b]$ is a complete metric space with respect to the standard distance function $|x-y|$.
10. Prove that \mathbb{R}^{n} is a complete metric space with respect to the Euclidian metric.

