MAT337H1, Introduction to Real Analysis: Solution to Problem 7 for Mar 22 class

Problem. Consider a sequence of continuous functions on $[-1,1]$ given by

$$
f_{n}(x)=\left\{\begin{array}{l}
0, \text { if } x \leq-\frac{1}{n} \\
1+n x \text { if }-\frac{1}{n}<x \leq 0 \\
1-n x \text { if } 0<x \leq \frac{1}{n} \\
0, \text { if } x>\frac{1}{n}
\end{array}\right.
$$

Show that $f_{n} \rightarrow 0$ in L^{1}-metric, but not pointwise.
Solution. Let ρ be the L^{1}-metric on the set $C[-1,1]$ of continuous functions on $[-1,1]$. To prove that $f_{n} \rightarrow 0$ in L^{1}-metric, we need to show that $\rho\left(f_{n}, 0\right) \rightarrow 0$ when $n \rightarrow \infty$. We have

$$
\rho\left(f_{n}, 0\right)=\int_{-1}^{1}\left|f_{n}(x)-0\right| d x=\int_{-1}^{1}\left|f_{n}(x)\right| d x \stackrel{\text { sincef } f_{n} \geq 0}{=} \int_{-1}^{1} f_{n}(x) d x
$$

The latter integral is equal to the area under the graph of f_{n}, i.e., the area of the triangle with vertices $\left(-\frac{1}{n}, 0\right),\left(\frac{1}{n}, 0\right),(0,1)$. So,

$$
\int_{-1}^{1} f_{n}(x) d x=\frac{1}{n}
$$

(This can also be computed using the fundamental theorem of calculus.) Hence we see that $\rho\left(f_{n}, 0\right)=\frac{1}{n} \rightarrow 0$, meaning that $f_{n} \rightarrow 0$ in L^{1}-metric.

As for pointwise convergence, notice that $f_{n}(0)=1$ for any n, so

$$
\lim _{n \rightarrow \infty} f_{n}(0)=1 \neq 0
$$

meaning that the sequence f_{n} does not converge to 0 pointwise. (Recall that pointwise convergence of f_{n} to 0 in $[-1,1]$ means that $f_{n}(x)$ convergence to 0 for any $x \in[-1,1]$.)

