MAT337H1, Introduction to Real Analysis: solution to Problem 1 for Mar 24
class

Problem. Consider a sequence of continuous functions on [—1, 1] given by

0, ifx < —1,
n
folz) = q3+%, if —L<a<l
1, if x> 1

Show that this sequence is Cauchy in the L'-metric, but does not converge (in the same
metric) to any continuous function. Therefore, the space C[—1, 1] with the L'-metric is not
complete.

Solution. Let m,n be natural numbers. Assume that n > m. Then f, — f,, = 0 when
2> L. So,

1 3
[ 100 = u@lde = 7 1@) = e
Furthermore, we have

(@) = fo(@)| < |ful@)| + | fm(2)] < 2,

and it follows that
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|7 lhule) = fuwldn < [ 20 =

where we used that f > ¢ implies fab fdx > f: gdz for any a < b and any functions f,g
integrable on [a,b] (Exercise H for Section 6.3). So, for n > m we have p(f,, fm) < =, where
p is the L'-metric. Analogously, for m > n, we have p(f,, fm) < %. Therefore, if m,n > N,
then p(fr, fim) < %. Since the latter expression can be made less than ¢ for any ¢ > 0, it
follows that the sequence f,, is Cauchy.

To show that the sequence f,, does not converge we use the following lemma. The lemma
should be familiar if you solved Problem 3 for Mar 22 class.

Lemma. Let f(z) be a non-negative continuous function on a closed interval [a,b].
Assume that fabf(x)dx = 0. Then f(x) =0 in [a,b].

Proof of the lemma. Assume that there exists zy € [a, b] such that f(zg) > 0. Then, by
continuity of f, there is 6 > 0 such that |f(z) — f(zo)| < 3 f(20) for any = € [a, ] satisfying
|r — z9| < 6. Let [e,d] be any closed interval completely contained in the intersection
[a,b] N (zo — &, 29+ ). (For instance, one can take ¢ = max(a, zg — 36), d = min(b, zg + 9).)
Then, for any z € [c, d] we have

1)~ Fa)] < 5flm) = (@) > 5 (o)



Therefore,

/abf<x>dx _ /acf(x)dx—ir/cdf(a:)dx+/dbf(x)dx > /Cdf(x)dx
= /Cd %f@o)df = %f(xo)(c —d),

where in the first inequality we used that the integral of a non-negative function is non-
negative, while in the second inequality we used that f > ¢ implies fcd fdx > fcd gdz for any
¢ < d and any functions f, g integrable on [c,d]| (Exercise H for Section 6.3). The obtained
inequality contradicts the assumption fab f(z)dx =0, so the lemma is proved.

Now we show that the sequence f,, does not converge.

Proof 1. Assume that f,, — f, where f is continuous. This means that

lim/]fn ~ f(2)|dz = 0.

n—o0

Note that for any subinterval [a,b] C [—1, 1] we have

[ 100 - sl < [ 1)~ @,

lim/ |fu(z) — f(z)|de =0

n—oo

SO

by the squeeze theorem. Applying this for a = —1 and any b € (—1,0), we get

b
lim |fn( ) — f(x)|dx = 0.

n—o0

At the same time, there exists N such that f,, = 0 on [~1,b] for n > N (any N > —3; works).

So, for n > N, we have
b b
n(x) — f(x)|de = x)|dx.
| @)= @it = [ 1)

Since the limit of the left-hand side as n — oo is 0, we get that

b
s =0,

and it follows from the lemma that f = 0 on [—1,b]. Since b is an arbitrary negative number,
this means that f =0 on [—1,0). Similarly, using

1
lim |fn( ) = f(z)|dz =0,
n— o0
where a € (0,1), one shows that f = 1 on (0,1]. But continuous functions equal to 0 on
[—1,0) and equal to 1 on (0, 1] do not exist. The obtained contradiction shows that the
sequence f, does not converge.



Proof 2. Let f be the function on [—1,1] equal to 0 for x < 0 and equal to 1 for z > 0.
Consider the set X of functions on [0, 1] that consists of all continuous functions and the
function f: X = C[-1,1] U {f}. Notice that the L'-distance p(g,h) = f_ll lg — hldz is
well-defined on X. Indeed, for any ¢g,h € X the function |g — h| is bounded (why?) and
continuous everywhere except, possibly, at 0, so it is integrable (Problem 7 for Mar 15).
Moreover (X, p) is a metric space. The triangle inequality is checked in the same way as for
continuous functions. So, what needs to be checked is that p(g,h) # 0 when g # h. We
already know this is true when g, h € C[—1,1], so it suffices to consider the case when g is
continuous and h = f. Assume that p(g, f) = 0. But then

0
[ o= sias=o.
—1

Since |g — f| is continuous in [—1,0], it follows that ¢ = f = 0 on [—1,0]. Analogously,
g = f=1on [a,1] for any a > 0, which means that g(z) = 1 for x > 0. But continuous
functions equal to 0 on [—1,0] and equal to 1 on (0,1] do not exist. So, it follows that
p(g, f) # 0, and (X, p) is a metric space. In this metric space we have f, — f (check
this). But then f,, does not converge to a continuous function since the limit of a convergent
sequence in a metric space is unique (Problem 3 for Mar 24).



