MAT337H1, Introduction to Real Analysis: solution to Problem 1 for Mar 24 class

Problem. Consider a sequence of continuous functions on $[-1,1]$ given by

$$
f_{n}(x)=\left\{\begin{array}{l}
0, \text { if } x \leq-\frac{1}{n} \\
\frac{1}{2}+\frac{n x}{2}, \text { if }-\frac{1}{n}<x \leq \frac{1}{n} \\
1, \text { if } x>\frac{1}{n}
\end{array}\right.
$$

Show that this sequence is Cauchy in the L^{1}-metric, but does not converge (in the same metric) to any continuous function. Therefore, the space $C[-1,1]$ with the L^{1}-metric is not complete.

Solution. Let m, n be natural numbers. Assume that $n \geq m$. Then $f_{n}-f_{m}=0$ when $|x| \geq \frac{1}{m}$. So,

$$
\int_{-1}^{1}\left|f_{n}(x)-f_{m}(x)\right| d x=\int_{-\frac{1}{m}}^{\frac{1}{m}}\left|f_{n}(x)-f_{m}(x)\right| d x .
$$

Furthermore, we have

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq\left|f_{n}(x)\right|+\left|f_{m}(x)\right| \leq 2
$$

and it follows that

$$
\int_{-\frac{1}{m}}^{\frac{1}{m}}\left|f_{n}(x)-f_{m}(x)\right| d x \leq \int_{-\frac{1}{m}}^{\frac{1}{m}} 2 d x=\frac{4}{m}
$$

where we used that $f \geq g$ implies $\int_{a}^{b} f d x \geq \int_{a}^{b} g d x$ for any $a<b$ and any functions f, g integrable on $[a, b]$ (Exercise H for Section 6.3). So, for $n \geq m$ we have $\rho\left(f_{n}, f_{m}\right) \leq \frac{4}{m}$, where ρ is the L^{1}-metric. Analogously, for $m \geq n$, we have $\rho\left(f_{n}, f_{m}\right) \leq \frac{4}{n}$. Therefore, if $m, n \geq N$, then $\rho\left(f_{n}, f_{m}\right) \leq \frac{4}{N}$. Since the latter expression can be made less than ε for any $\varepsilon>0$, it follows that the sequence f_{n} is Cauchy.

To show that the sequence f_{n} does not converge we use the following lemma. The lemma should be familiar if you solved Problem 3 for Mar 22 class.

Lemma. Let $f(x)$ be a non-negative continuous function on a closed interval $[a, b]$. Assume that $\int_{a}^{b} f(x) d x=0$. Then $f(x)=0$ in $[a, b]$.

Proof of the lemma. Assume that there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)>0$. Then, by continuity of f, there is $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\frac{1}{2} f\left(x_{0}\right)$ for any $x \in[a, b]$ satisfying $\left|x-x_{0}\right|<\delta$. Let $[c, d]$ be any closed interval completely contained in the intersection $[a, b] \cap\left(x_{0}-\delta, x_{0}+\delta\right)$. (For instance, one can take $c=\max \left(a, x_{0}-\frac{1}{2} \delta\right), d=\min \left(b, x_{0}+\frac{1}{2} \delta\right)$.) Then, for any $x \in[c, d]$ we have

$$
\left|f(x)-f\left(x_{0}\right)\right|<\frac{1}{2} f\left(x_{0}\right) \quad \Rightarrow \quad f(x)>\frac{1}{2} f\left(x_{0}\right)
$$

Therefore,

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x+\int_{d}^{b} f(x) d x \geq \int_{c}^{d} f(x) d x \\
\geq \int_{c}^{d} \frac{1}{2} f\left(x_{0}\right) d x=\frac{1}{2} f\left(x_{0}\right)(c-d)
\end{gathered}
$$

where in the first inequality we used that the integral of a non-negative function is nonnegative, while in the second inequality we used that $f \geq g$ implies $\int_{c}^{d} f d x \geq \int_{c}^{d} g d x$ for any $c<d$ and any functions f, g integrable on $[c, d]$ (Exercise H for Section 6.3). The obtained inequality contradicts the assumption $\int_{a}^{b} f(x) d x=0$, so the lemma is proved.

Now we show that the sequence f_{n} does not converge.
Proof 1. Assume that $f_{n} \rightarrow f$, where f is continuous. This means that

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|f_{n}(x)-f(x)\right| d x=0
$$

Note that for any subinterval $[a, b] \subset[-1,1]$ we have

$$
\int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x \leq \int_{-1}^{1}\left|f_{n}(x)-f(x)\right| d x
$$

so

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x=0
$$

by the squeeze theorem. Applying this for $a=-1$ and any $b \in(-1,0)$, we get

$$
\lim _{n \rightarrow \infty} \int_{-1}^{b}\left|f_{n}(x)-f(x)\right| d x=0
$$

At the same time, there exists N such that $f_{n}=0$ on $[-1, b]$ for $n \geq N$ (any $N \geq-\frac{1}{b}$ works). So, for $n \geq N$, we have

$$
\int_{-1}^{b}\left|f_{n}(x)-f(x)\right| d x=\int_{a}^{b}|f(x)| d x
$$

Since the limit of the left-hand side as $n \rightarrow \infty$ is 0 , we get that

$$
\int_{-1}^{b}|f(x)| d x=0
$$

and it follows from the lemma that $f=0$ on $[-1, b]$. Since b is an arbitrary negative number, this means that $f=0$ on $[-1,0)$. Similarly, using

$$
\lim _{n \rightarrow \infty} \int_{a}^{1}\left|f_{n}(x)-f(x)\right| d x=0
$$

where $a \in(0,1)$, one shows that $f=1$ on $(0,1]$. But continuous functions equal to 0 on $[-1,0)$ and equal to 1 on $(0,1]$ do not exist. The obtained contradiction shows that the sequence f_{n} does not converge.

Proof 2. Let f be the function on $[-1,1]$ equal to 0 for $x \leq 0$ and equal to 1 for $x>0$. Consider the set X of functions on $[0,1]$ that consists of all continuous functions and the function $f: X=C[-1,1] \cup\{f\}$. Notice that the L^{1}-distance $\rho(g, h)=\int_{-1}^{1}|g-h| d x$ is well-defined on X. Indeed, for any $g, h \in X$ the function $|g-h|$ is bounded (why?) and continuous everywhere except, possibly, at 0 , so it is integrable (Problem 7 for Mar 15). Moreover (X, ρ) is a metric space. The triangle inequality is checked in the same way as for continuous functions. So, what needs to be checked is that $\rho(g, h) \neq 0$ when $g \neq h$. We already know this is true when $g, h \in C[-1,1]$, so it suffices to consider the case when g is continuous and $h=f$. Assume that $\rho(g, f)=0$. But then

$$
\int_{-1}^{0}|g-f| d x=0
$$

Since $|g-f|$ is continuous in $[-1,0]$, it follows that $g=f=0$ on $[-1,0]$. Analogously, $g=f=1$ on $[a, 1]$ for any $a>0$, which means that $g(x)=1$ for $x>0$. But continuous functions equal to 0 on $[-1,0]$ and equal to 1 on $(0,1]$ do not exist. So, it follows that $\rho(g, f) \neq 0$, and (X, ρ) is a metric space. In this metric space we have $f_{n} \rightarrow f$ (check this). But then f_{n} does not converge to a continuous function since the limit of a convergent sequence in a metric space is unique (Problem 3 for Mar 24).

