MAT337H1, Introduction to Real Analysis: recommended problems for Mar 29 class

1. In class we used that

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

for a function $f \in C[a, b]$. Prove that this inequality in fact holds for any function fRiemann integrable on [a, b]. (In particular show that this inequality makes sense for any integrable f. In other words, if f is integrable, then |f| is integrable as well.)

- 2. Prove that a mapping $F: X \to Y$ between metric spaces is continuous if and only if for any sequence x_n convergent to $x \in X$ the sequence $F(x_n)$ converges to F(x).
- 3. Prove the following generalization of the triangle inequality ("polygon inequality"): If (X, ρ) is metric space, and $x_1, \ldots, x_n \in X$, then

$$\rho(x_1, x_n) \le \sum_{k=1}^{n-1} \rho(x_k, x_{k+1}).$$

4. Consider a sequence of continuous functions on [0, 1] given by

$$f_n(x) = \begin{cases} \sqrt{n}(1-xn), & \text{if } x \le \frac{1}{n}, \\ 0, & \text{if } x > \frac{1}{n}. \end{cases}$$

Show that $f_n \to 0$ in the L^1 -metric, but $f_n^2 \not\to 0$ in the L^1 -metric. Hence show that the mapping $F: C[0,1] \to C[0,1]$ given by $F(f) = f^2$ is discontinuous at $0 \in C[0,1]$ when both the domain and the codomain are endowed with the L^1 -metric.

- 5. Show that the mapping F from the previous problem is in fact discontinuous at every "point" $f \in C[0, 1]$. Hint: Show that $f_n + f \to f$, but $(f_n + f)^2 \not\to f^2$.
- 6. Let (X, ρ) be a metric space, and let $x_0 \in X$. Show that the function $f: X \to \mathbb{R}$ given by $f(x) = \rho(x, x_0)$ (i.e., a function measuring the distance to a given point) is continuous with respect to the metric ρ .
- 7. Let f(x) be a differentiable function on \mathbb{R} . Show that f is a contraction if and only if f'(x) is bounded, and $\sup |f'| < 1$.
- 8. Let F be a contraction on a complete metric space (X, ρ) : $\rho(F(x), F(y)) \leq k\rho(x, y)$, $k \in [0, 1)$. Let x^* be the fixed point of F. Take arbitrary $x_0 \in X$, and define a sequence x_n by the rule $x_n = f(x_{n-1})$. Show that

$$\rho(x_n, x^*) \le \frac{k^n}{1-k}\rho(x_0, x_1).$$

9. Use the contraction mapping principle to show that the equation $\cos(x) = x$ has exactly one real solution.

10. Let $\lambda \in (0, 1)$. Consider the metric space $C[0, \lambda]$ with the uniform metric. Show that $F: C[0, \lambda] \to C[0, \lambda]$ given by

$$(F(f))(x) = 1 + \int_0^x f(t)dt$$

is a contraction. Find the fixed point of the map F. By applying the map n times to f = 1, find a sequence converging to the fixed point uniformly in $[0, \lambda]$.