1. In class we used that

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

for a function $f \in C[a, b]$. Prove that this inequality in fact holds for any function f Riemann integrable on $[a, b]$. (In particular show that this inequality makes sense for any integrable f. In other words, if f is integrable, then $|f|$ is integrable as well.)
2. Prove that a mapping $F: X \rightarrow Y$ between metric spaces is continuous if and only if for any sequence x_{n} convergent to $x \in X$ the sequence $F\left(x_{n}\right)$ converges to $F(x)$.
3. Prove the following generalization of the triangle inequality ("polygon inequality"): If (X, ρ) is metric space, and $x_{1}, \ldots, x_{n} \in X$, then

$$
\rho\left(x_{1}, x_{n}\right) \leq \sum_{k=1}^{n-1} \rho\left(x_{k}, x_{k+1}\right) .
$$

4. Consider a sequence of continuous functions on $[0,1]$ given by

$$
f_{n}(x)= \begin{cases}\sqrt{n}(1-x n), & \text { if } x \leq \frac{1}{n} \\ 0, & \text { if } x>\frac{1}{n}\end{cases}
$$

Show that $f_{n} \rightarrow 0$ in the L^{1}-metric, but $f_{n}^{2} \nrightarrow 0$ in the L^{1}-metric. Hence show that the mapping $F: C[0,1] \rightarrow C[0,1]$ given by $F(f)=f^{2}$ is discontinuous at $0 \in C[0,1]$ when both the domain and the codomain are endowed with the L^{1}-metric.
5. Show that the mapping F from the previous problem is in fact discontinuous at every "point" $f \in C[0,1]$. Hint: Show that $f_{n}+f \rightarrow f$, but $\left(f_{n}+f\right)^{2} \nrightarrow f^{2}$.
6. Let (X, ρ) be a metric space, and let $x_{0} \in X$. Show that the function $f: X \rightarrow \mathbb{R}$ given by $f(x)=\rho\left(x, x_{0}\right)$ (i.e., a function measuring the distance to a given point) is continuous with respect to the metric ρ.
7. Let $f(x)$ be a differentiable function on \mathbb{R}. Show that f is a contraction if and only if $f^{\prime}(x)$ is bounded, and $\sup \left|f^{\prime}\right|<1$.
8. Let F be a contraction on a complete metric space $(X, \rho): \rho(F(x), F(y)) \leq k \rho(x, y)$, $k \in[0,1)$. Let x^{*} be the fixed point of F. Take arbitrary $x_{0} \in X$, and define a sequence x_{n} by the rule $x_{n}=f\left(x_{n-1}\right)$. Show that

$$
\rho\left(x_{n}, x^{*}\right) \leq \frac{k^{n}}{1-k} \rho\left(x_{0}, x_{1}\right) .
$$

9. Use the contraction mapping principle to show that the equation $\cos (x)=x$ has exactly one real solution.
10. Let $\lambda \in(0,1)$. Consider the metric space $C[0, \lambda]$ with the uniform metric. Show that $F: C[0, \lambda] \rightarrow C[0, \lambda]$ given by

$$
(F(f))(x)=1+\int_{0}^{x} f(t) d t
$$

is a contraction. Find the fixed point of the map F. By applying the map n times to $f=1$, find a sequence converging to the fixed point uniformly in $[0, \lambda]$.

