MAT337H1, Introduction to Real Analysis: recommended problems for Mar 31

 class1. Let $f(x)$ be a function defined and continuous in an interval (a, b). Let also $x_{0} \in(a, b)$, and let t_{0} be any real number. Show that the initial value problem

$$
\frac{d x}{d t}=f(x), \quad x\left(t_{0}\right)=x_{0}
$$

has a solution $x(t)$ defined for $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ for some $\varepsilon>0$.
Hint: If $f\left(x_{0}\right)=0$, then the desired solution is $x(t) \equiv x_{0}$. If $f\left(x_{0}\right) \neq 0$, then $f(x) \neq 0$ is some neigborhood of x_{0}. So, in that neigborhood we should have

$$
\frac{x^{\prime}(t)}{f(x(t))}=1 \quad \Rightarrow \quad \int_{t_{0}}^{t} \frac{x^{\prime}(\xi)}{f(x(\xi))} d \xi=t-t_{0}
$$

Further, since $x^{\prime}(\xi)=f(x(\xi)) \neq 0$, we can apply the substitution rule and get

$$
\int_{t_{0}}^{t} \frac{x^{\prime}(\xi)}{f(x(\xi))} d \xi=\int_{x_{0}}^{x(t)} \frac{d \eta}{f(\eta)}
$$

This argument shows that if a solution $x(t)$ exists, then it satisifes

$$
t-t_{0}=\int_{x_{0}}^{x(t)} \frac{d \eta}{f(\eta)}
$$

Show that this equation indeed determines a function $x(t)$ defined for $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ for some $\varepsilon>0$, and that this function solves the given initial value problem.

Remark: In elementary calculus or differential equations courses, the above computation is usually performed in the following, not quite formal, way:

$$
\frac{d x}{d t}=f(x) \quad \Rightarrow \quad \frac{d x}{f(x)}=d t \quad \Rightarrow \quad \int \frac{d x}{f(x)}=\int d t
$$

which gives the same result as above. This is known as the separation of variables method. More generally, it applies to equations of the form

$$
\frac{d x}{d t}=f(x) g(t)
$$

2. Apply the above method to solve the equation

$$
x^{\prime}=3 x^{\frac{2}{3}} .
$$

Show that the solution of the initial value problem $x(0)=0$ is not unique.
Remark: Recall that Picard-Lindelof theorem, in particular, requires, that the righthand side of the equation $x^{\prime}=f(x, t)$ is differentiable in x. This condition is violated in this case, that is why it is possible to have more than one solution.

