MAT337, Real Analysis Midterm 1 Solutions

1. (a) Give a definition of a Cauchy sequence.

A sequence a_{n} os real numbers is called Cauchy if for any real number $\varepsilon>0$ there exists a natural number N such that $\left|a_{n}-a_{m}\right|<\varepsilon$ as long as $m, n \geq N$.
(b) Let a_{n} be a Cauchy sequence such that $a_{n} \neq 0$ for every n. Is it always true that $1 / a_{n}$ is also a Cauchy sequence? Justify your answer. (Prove if true, give a counterexample if not.)

This is not always true. For example, the sequence $a_{n}=1 / n$ is Cauchy (because it converges to 0), but the sequence $1 / a_{n}=n$ is not Cauchy (because is it is unbounded and hence divergent).
2. (a) Give a definition of a bounded set.

A subset $S \subset \mathbb{R}$ is called bounded if there exist numbers $m, M \in \mathbb{R}$ such that $m \leq x \leq M$ for any $x \in S$. (Equivalently, if there exists $c>0$ such that $|x| \leq c$ for any $x \in S$.)
(b) Is the set

$$
\left\{\left.\frac{1}{x^{2}-3} \right\rvert\, x \in \mathbb{Q}\right\}
$$

bounded? Justify your answer.
No, this set is not bounded. Take a sequence x_{n} of rational numbers such that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{3}$. Then $\lim _{n \rightarrow \infty} x_{n}^{2}=3$ and $\lim _{n \rightarrow \infty}\left(x_{n}^{2}-3\right)=0$. This, in particular, means that for any $\varepsilon>0$ there exists n such that $\left|x_{n}^{2}-3\right|<\varepsilon$, which implies $\left|\frac{1}{x_{n}^{2}-3}\right|>\frac{1}{\epsilon}$. Notice that $\frac{1}{x_{n}^{2}-3}$ is in our set. Furthermore, since $\varepsilon>0$ is arbitrary, $\frac{1}{\epsilon}$ can take any positive value, so for any $c>0$ there exists an element y of our set with $|y|>c$. This means that our set is unbounded.
3. Define a sequence a_{n} by

$$
a_{n}=\frac{n^{2}+1}{n^{2}-5 n+7} .
$$

(a) Prove that for any real number $\varepsilon>0$ there exists a natural number N such that $\left|a_{n}-1\right|<\varepsilon$ for any natural number $n \geq N$. (You should explicitly find N in terms of ε.)

$$
\left|a_{n}-1\right|=\left|\frac{n^{2}+1}{n^{2}-5 n+7}-1\right|=\left|\frac{5 n-6}{n^{2}-5 n+7}\right|=\frac{|5 n-6|}{n^{2}-5 n+7}
$$

Notice that for $n \geq 2$ we have $|5 n-6|=5 n-6<5 n$. At the same time, for $n=1$, we also have $|5 n-6|<5 n(1<5)$. So, we always have $|5 n-6|<5 n$. Further, we have $n^{2}-5 n+7>n^{2}-5 n$. So, as long as $n^{2}-5 n>0$ (i.e., $n>5$), we have

$$
\left|a_{n}-1\right|=\frac{|5 n-6|}{n^{2}-5 n+7}<\frac{5 n}{n^{2}-5 n}=\frac{5}{n-5} .
$$

The expression $\frac{5}{n-5}$ is less than ϵ when $n>5+5 / \varepsilon$. So, as N we can take any integer greater than $5+5 / \varepsilon$. (Notice that the latter expression is automatically greater than 5 , so all our estimates are valid.)
(b) What does the result of (a) say about the limit of a_{n} ?

This limit is equal to 1 , by definition.
4. Let $X=\left\{x \in \mathbb{R} \mid x^{3}+x<1\right\}$.
(a) Show that the set X is nonempty and bounded above, and hence has a least upper bound.

We have $0^{3}+0<1$, so $0 \in X$. Therefore, X is not empty. Further, let us show that 1 is an upper bound for X. For this we need to prove that $x<1$ for any $x \in X$. Assume that $x>1$ for some $x \in X$. Then $x^{3}>1$, so $x+x^{3}>2$, which contradicts x being in X. So, 1 is indeed an upper bound.
(b) Prove that $(\sup X)^{3}+\sup X=1$.

This can be proved in a way similar to how we proved that if $z=\sup \{x \in$ $\left.\mathbb{R} \mid x^{2}<2, x>0\right\}$, then $z^{2}=2$. (See lecture notes and recommended problems for Jan 18.) Let me give a computationally simpler proof using limits. Let $z=\sup X$. Consider the sequence $x_{n}=z+1 / n$. Note that $x_{n} \notin X$, since z is an upper bound for S. Therefore, $x_{n}^{3}+x_{n} \geq 1$. Further, notice that $\lim _{n \rightarrow \infty} x_{n}=z$, so $\lim _{n \rightarrow \infty}\left(x_{n}^{3}+x_{n}\right)=z^{3}+z$. But since $x_{n}^{3}+x_{n} \geq 1$, it follows that $z^{3}+z \geq 1$. (See Exercise C for Section
2.4.) Further, consider the sequence $y_{n}=z-1 / n$. Then y_{n} is not an upper bound for X (because z is the least upper bound). This means that there is $x \in X$ such that $y_{n}<x$. From the latter it follows that $y_{n}^{3}<x^{3}$ and $y_{n}^{3}+y_{n}<x_{3}+x<1$. So, we conclude that $y_{n}^{3}+y_{n}<1$. At the same time, using the same argument as for the sequence x_{n}, we get $\lim _{n \rightarrow \infty}\left(y_{n}^{3}+y_{n}\right)=z^{3}+z$, so $z^{3}+z \leq 1$. (We are again using the result of Exercise C for Section 2.4.) So, we showed that $z^{3}+z \geq 1$ and $z^{3}+z \leq 1$, meaning that $z^{3}+z=1$.
5. Define a sequence x_{n} by

$$
x_{1}=2, \quad x_{n+1}=\frac{1}{x_{n}}+\frac{x_{n}}{2} \forall n \geq 1 .
$$

(a) Using the monotone convergence theorem, or otherwise, prove that the sequence x_{n} converges.

Let us show that this sequence is non-increasing, i.e. that $x_{n+1} \leq x_{n}$ for every n. This inequality can be rewritten as

$$
\frac{1}{x_{n}}+\frac{x_{n}}{2} \leq x_{n} \Leftrightarrow \frac{1}{x_{n}} \leq \frac{x_{n}}{2} \Leftrightarrow x_{n}^{2} \geq 2 \Leftrightarrow x_{n} \geq \sqrt{2}
$$

where in the last two steps we used that all terms of the sequence x_{n} are positive. (Note that x_{1} is positive and positivity of x_{n} implies positivity of x_{n+1}, so all terms are positive by induction.) We conclude that the sequence is indeed non-increasing as long as it is true that $x_{n} \geq \sqrt{2}$ for every n. Let us check this. This will also show that the sequence x_{n} is bounded below.
Notice that $x_{1}>\sqrt{2}$. So, it suffices to show that $x_{n} \geq \sqrt{2}$ for $n \geq 2$. For such values of n, we have
$x_{n}-\sqrt{2}=\frac{1}{x_{n-1}}+\frac{x_{n-1}}{2}-\sqrt{2}=\frac{2+x_{n-1}^{2}-2 \sqrt{2} x_{n-1}}{2 x_{n-1}}=\frac{\left(x_{n-1}-\sqrt{2}\right)^{2}}{2 x_{n-1}} \geq 0$,
as desired. So, the sequence x_{n} is non-increasing and bounded below, and hence convergent by the monotone convergence theorem.
(b) What is the limit of x_{n} ? Justify your answer. (You should prove that the limit is a given number, however it is not necessary to do it by definition. You can use properties of limits.)

Let $L=\lim _{n \rightarrow \infty} x_{n}$ (this limit exists by part (a)). Consider the sequence x_{n+1} (i.e., the sequence x_{2}, x_{3}, \ldots). It has the same limit L. On the
other hand, by definition of x_{n}, this sequence is equal to the sequence $1 / x_{n}+x_{n} / 2$. By properties of limits, the limit of the latter sequence is $1 / L+L / 2$. (Here we use that $L \neq 0$. This follows, e.g., from the inequality $x_{n} \geq 2$.) Since the sequences x_{n+1} and $1 / x_{n}+x_{n} / 2$ are the same, their limits are equal:

$$
L=\frac{1}{L}+\frac{L}{2} .
$$

From this equation we find that $L= \pm \sqrt{2}$. But one cannot have $L=$ $-\sqrt{2}$, since $x_{n} \geq 0$. So, $L=\sqrt{2}$.
This construction is known as the Babylonian method for finding square roots. In general, the sequence

$$
x_{n+1}=\frac{1}{2}\left(\frac{a}{x_{n}}+x_{n}\right)
$$

(where $a>0$) converges to \sqrt{a} (for any choice of $x_{1}>0$).

