
MAT337, Real Analysis Midterm 1 Solutions

1. (a) Give a definition of a Cauchy sequence.

A sequence an os real numbers is called Cauchy if for any real number
ε > 0 there exists a natural number N such that |an− am| < ε as long as
m,n ≥ N .

(b) Let an be a Cauchy sequence such that an 6= 0 for every n. Is it always
true that 1/an is also a Cauchy sequence? Justify your answer. (Prove if
true, give a counterexample if not.)

This is not always true. For example, the sequence an = 1/n is Cauchy
(because it converges to 0), but the sequence 1/an = n is not Cauchy
(because is it is unbounded and hence divergent).

2. (a) Give a definition of a bounded set.

A subset S ⊂ R is called bounded if there exist numbers m,M ∈ R such
that m ≤ x ≤ M for any x ∈ S. (Equivalently, if there exists c > 0 such
that |x| ≤ c for any x ∈ S.)

(b) Is the set {
1

x2 − 3
| x ∈ Q

}
bounded? Justify your answer.

No, this set is not bounded. Take a sequence xn of rational numbers such
that limn→∞ xn =

√
3. Then limn→∞ x

2
n = 3 and limn→∞(x2n − 3) = 0.

This, in particular, means that for any ε > 0 there exists n such that

|x2n − 3| < ε, which implies
∣∣∣ 1
x2n−3

∣∣∣ > 1
ε . Notice that 1

x2n−3
is in our set.

Furthermore, since ε > 0 is arbitrary, 1
ε can take any positive value, so for

any c > 0 there exists an element y of our set with |y| > c. This means
that our set is unbounded.

3. Define a sequence an by

an =
n2 + 1

n2 − 5n+ 7
.



(a) Prove that for any real number ε > 0 there exists a natural number N
such that |an − 1| < ε for any natural number n ≥ N . (You should
explicitly find N in terms of ε.)

|an − 1| =
∣∣∣∣ n2 + 1

n2 − 5n+ 7
− 1

∣∣∣∣ =

∣∣∣∣ 5n− 6

n2 − 5n+ 7

∣∣∣∣ =
|5n− 6|

n2 − 5n+ 7

Notice that for n ≥ 2 we have |5n − 6| = 5n − 6 < 5n. At the same
time, for n = 1, we also have |5n − 6| < 5n (1 < 5). So, we always have
|5n − 6| < 5n. Further, we have n2 − 5n + 7 > n2 − 5n. So, as long as
n2 − 5n > 0 (i.e., n > 5), we have

|an − 1| = |5n− 6|
n2 − 5n+ 7

<
5n

n2 − 5n
=

5

n− 5
.

The expression 5
n−5 is less than ε when n > 5 + 5/ε. So, as N we can

take any integer greater than 5 + 5/ε. (Notice that the latter expression
is automatically greater than 5, so all our estimates are valid.)

(b) What does the result of (a) say about the limit of an?

This limit is equal to 1, by definition.

4. Let X = {x ∈ R | x3 + x < 1}.

(a) Show that the set X is nonempty and bounded above, and hence has a
least upper bound.

We have 03 + 0 < 1, so 0 ∈ X. Therefore, X is not empty. Further, let
us show that 1 is an upper bound for X. For this we need to prove that
x < 1 for any x ∈ X. Assume that x > 1 for some x ∈ X. Then x3 > 1,
so x+ x3 > 2, which contradicts x being in X. So, 1 is indeed an upper
bound.

(b) Prove that (supX)3 + supX = 1.

This can be proved in a way similar to how we proved that if z = sup {x ∈
R | x2 < 2, x > 0}, then z2 = 2. (See lecture notes and recommended
problems for Jan 18.) Let me give a computationally simpler proof using
limits. Let z = supX. Consider the sequence xn = z + 1/n. Note
that xn /∈ X, since z is an upper bound for S. Therefore, x3n + xn ≥ 1.
Further, notice that limn→∞ xn = z, so limn→∞(x3n + xn) = z3 + z. But
since x3n + xn ≥ 1, it follows that z3 + z ≥ 1. (See Exercise C for Section

2



2.4.) Further, consider the sequence yn = z − 1/n. Then yn is not an
upper bound for X (because z is the least upper bound). This means
that there is x ∈ X such that yn < x. From the latter it follows that
y3n < x3 and y3n + yn < x3 + x < 1. So, we conclude that y3n + yn < 1.
At the same time, using the same argument as for the sequence xn, we
get limn→∞(y3n + yn) = z3 + z, so z3 + z ≤ 1. (We are again using the
result of Exercise C for Section 2.4.) So, we showed that z3 + z ≥ 1 and
z3 + z ≤ 1, meaning that z3 + z = 1.

5. Define a sequence xn by

x1 = 2, xn+1 =
1

xn
+
xn
2
∀ n ≥ 1.

(a) Using the monotone convergence theorem, or otherwise, prove that the
sequence xn converges.

Let us show that this sequence is non-increasing, i.e. that xn+1 ≤ xn for
every n. This inequality can be rewritten as

1

xn
+
xn
2
≤ xn ⇔

1

xn
≤ xn

2
⇔ x2n ≥ 2⇔ xn ≥

√
2,

where in the last two steps we used that all terms of the sequence xn are
positive. (Note that x1 is positive and positivity of xn implies positivity
of xn+1, so all terms are positive by induction.) We conclude that the
sequence is indeed non-increasing as long as it is true that xn ≥

√
2 for

every n. Let us check this. This will also show that the sequence xn is
bounded below.

Notice that x1 >
√

2. So, it suffices to show that xn ≥
√

2 for n ≥ 2. For
such values of n, we have

xn−
√

2 =
1

xn−1
+
xn−1

2
−
√

2 =
2 + x2n−1 − 2

√
2xn−1

2xn−1
=

(xn−1 −
√

2)2

2xn−1
≥ 0,

as desired. So, the sequence xn is non-increasing and bounded below, and
hence convergent by the monotone convergence theorem.

(b) What is the limit of xn? Justify your answer. (You should prove that the
limit is a given number, however it is not necessary to do it by definition.
You can use properties of limits.)

Let L = limn→∞ xn (this limit exists by part (a)). Consider the sequence
xn+1 (i.e., the sequence x2, x3, . . . ). It has the same limit L. On the
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other hand, by definition of xn, this sequence is equal to the sequence
1/xn + xn/2. By properties of limits, the limit of the latter sequence
is 1/L + L/2. (Here we use that L 6= 0. This follows, e.g., from the
inequality xn ≥ 2.) Since the sequences xn+1 and 1/xn + xn/2 are the
same, their limits are equal:

L =
1

L
+
L

2
.

From this equation we find that L = ±
√

2. But one cannot have L =
−
√

2, since xn ≥ 0. So, L =
√

2.

This construction is known as the Babylonian method for finding square
roots. In general, the sequence

xn+1 =
1

2

(
a

xn
+ xn

)
(where a > 0) converges to

√
a (for any choice of x1 > 0).


