MAT337, Real Analysis Midterm 2 — Solutions

1.

(a)

Let f be a function on (a,b), and let x¢ € (a,b). Let also L € R. Define
what it means that lim,_,,, f(z) = L.

Solution. We say that lim,_,,, f(z) = L if for any ¢ > 0 there exists
d > 0 such that for any = € (a,b) satisfying 0 < |z — z9| < & we have
|f(xz) — L| < e. (The condition = € (a,b) can be omitted, because when
we say that |f(x) — L| < e, this, in particular, means that f(z) is well-
defined.)

Using your definition, prove that there exists no finite limit lim,_,q %

Solution. Assume that lim, g % = L. Applying the above definition for
e = 1 (any other value of € would work too) we see that there exists § > 0
such that for any x satisfying 0 < |z| < § we have |% — L] <1, ie, % €
(L—1,L+1). But 0 < |z| < 4 is equivalent to 1 € (—o0, —§) U (5, +00).
So we get that any z in (—oo, —3) U (%, 400) is also in (L —1, L+1). But
this is not possible. For instance, max(L + 2, % +1) is in the first set, but
not in the second one. So, the definition of a limit cannot be satisfied,

and there is no finite limit lim,_q %

Let f(x) = max(1 — z/2,z). Show that for any € > 0 there exists § > 0
such that for any = € (3 — 6, 2 + 6) we have |f(z) — 2| <e.

Solution. By definition of f(z) we have |f(z)—3| = [z—3| or | f(z)—3| =
1—-2—-2 =13 % = 3|3 -2 = 3|z — 2| So,if [z — 2| <4, then
|f(z) — 2| < 8. Therefore, § = ¢ is what we are looking for.

Hence determine whether f(z) is continuous at 2.

Solution. Since f(2) = 2, the result of (a) means that for any £ > 0
there exists § > 0 such that for any = satisfying |z — %| < 6 we have
|f(z) — f(3)| < e. But this means (by definition of continuity) that f is
continuous at %

3. Let f be a function defined and continuous on [0, 1]. Assume also that f(0) < 0

and f(1) > 0. Let g = inf{zx € [0,1] | f(x) > 0}. Prove that f(xz¢) = 0.

Solution. Assume that f(zg) # 0. Then, by definition of continuity at xg
applied for e = | f(zo)|, there exists § > 0 such that for any x € [0, 1] satisfying
|z — x| < 6 we have |f(z) — f(xo0)| < |f(zo)|. The latter in particular means
that f(z) has the same sign as f(xg) when x € [0,1] and |z — x| < § (cf.
Exercise 4 for Feb 4 class).



Now consider two cases: f(xo) > 0 and f(xzg) < 0. If f(xg) > 0, we get that
f(z) > 0 when x € [0, 1] and |z — z¢| < 6. Notice that since f(0) < 0, we have
that 0 is not in the d-neighborhood of xg, and it follows that xo — % > (. Since
xo — g is both in [0, 1] and d-neighborhood of z(, we get that f(zo — %) > 0,
which contradicts zp being the infinum of {z € [0,1] | f(z) > 0}.

Similarly, if f(xg) < 0, we have that f(z) < 0 when z € [0,1] and |z —z¢| < 6.
Since f(1) > 0, it follows that xo +d < 1, and the interval [xg,zo + 0) is
completely contained in [0,1]. Therefore, f is well-defined and negative on
[0, 2o + ¢). But by definition of z, the function f is non-positive on [0, z¢)
as well. So, we have that f <0 on [0,29+ 0), and g + J is a lower bound for
{z €10,1] | f(x) > 0}. But this contradicts z¢ being the greatest lower bound
of this set.

So, we get a contradiction in both cases f(zg) > 0 and f(zp) < 0, and it
follows that f(xo) = 0.

. Let f(z) be a function defined for any = € R and continuous on (0,1). Assume
also that there exist (finite) limits lim,—o f(z) and lim,_,; f(z). Prove that
f(z) is bounded on (0, 1).

Solution. Let Ly = lim, 0 f(x). Applying the definition of limit for ¢ = 1,
we get that there exists J such that for any x € (0,d) we have |f(x) — Lo| < 1,
ie., Lo— 1< f(x) < Lo+ 1.

Similarly, let Ly = lim,_1 f(z). Then there exists §’ such that for any z €
(1—-¢",1) we have L1 — 1 < f(x) < L1 + 1.

So, f(x) is bounded in (0,0) and (1 — ¢’,1). Furthermore, f(x) is continuous
in [0,1 — ¢'], so it is bounded in that interval as well. (By making § and ¢’
smaller if necessary, we can make § smaller than 1 — ¢, so that the interval
[0,1 —¢'] is well-defined.) Then it follows that f is bounded in (0, 1). Namely,
if m and M are some lower and upper bounds for f in [§,1 — ¢'], then

min(m, Lo —1,L1 — 1) < f(z) <max(M,Lo+1,L; +1)
for any z € (0,1).

. Let f be a differentiable function on R which has infinitely many zeros (i.e.,
there are infinitely many points € R such that f(z) = 0). Show that its
derivative f’(z) also has infinitely many zeroes.

Solution. Assume that f’ has finitely many, say, k, zeros (where k is a
non-negative integer). Consider the k + 1 intervals Iy,..., 11 obtained by
removing the zeros of f’ from the real line. Then f has at most one zero in
each of the intervals I;. Indeed, if there are two zeros of f in I}, then by Rolle’s



theorem there is a zero of f’ between them, which contradicts the construction
of I;’s.

So, f has at most one zero in each of the intervals I;, and, in addition, it may
vanish at the zeros of f’. It follows that f has at most 2k + 1 zeros in total.
(One can improve this estimate to make it £+ 1, but this is not needed.) This
contradicts f having infinitely many zeros. The obtained contradiction shows
that f’ has infinitely many zeros.



