MAT337, Real Analysis Midterm 2 - Solutions

1. (a) Let f be a function on (a, b), and let $x_{0} \in(a, b)$. Let also $L \in \mathbb{R}$. Define what it means that $\lim _{x \rightarrow x_{0}} f(x)=L$.

Solution. We say that $\lim _{x \rightarrow x_{0}} f(x)=L$ if for any $\varepsilon>0$ there exists $\delta>0$ such that for any $x \in(a, b)$ satisfying $0<\left|x-x_{0}\right|<\delta$ we have $|f(x)-L|<\varepsilon$. (The condition $x \in(a, b)$ can be omitted, because when we say that $|f(x)-L|<\varepsilon$, this, in particular, means that $f(x)$ is welldefined.)
(b) Using your definition, prove that there exists no finite limit $\lim _{x \rightarrow 0} \frac{1}{x}$.

Solution. Assume that $\lim _{x \rightarrow 0} \frac{1}{x}=L$. Applying the above definition for $\varepsilon=1$ (any other value of ε would work too) we see that there exists $\delta>0$ such that for any x satisfying $0<|x|<\delta$ we have $\left|\frac{1}{x}-L\right|<1$, i.e., $\frac{1}{x} \in$ $(L-1, L+1)$. But $0<|x|<\delta$ is equivalent to $\frac{1}{x} \in\left(-\infty,-\frac{1}{\delta}\right) \cup\left(\frac{1}{\delta},+\infty\right)$. So we get that any x in $\left(-\infty,-\frac{1}{\delta}\right) \cup\left(\frac{1}{\delta},+\infty\right)$ is also in $(L-1, L+1)$. But this is not possible. For instance, $\max \left(L+2, \frac{1}{\delta}+1\right)$ is in the first set, but not in the second one. So, the definition of a limit cannot be satisfied, and there is no finite limit $\lim _{x \rightarrow 0} \frac{1}{x}$.
2. (a) Let $f(x)=\max (1-x / 2, x)$. Show that for any $\varepsilon>0$ there exists $\delta>0$ such that for any $x \in\left(\frac{2}{3}-\delta, \frac{2}{3}+\delta\right)$ we have $\left|f(x)-\frac{2}{3}\right|<\varepsilon$.
Solution. By definition of $f(x)$ we have $\left|f(x)-\frac{2}{3}\right|=\left|x-\frac{2}{3}\right|$ or $\left|f(x)-\frac{2}{3}\right|=$ $\left|1-\frac{x}{2}-\frac{2}{3}\right|=\left|\frac{1}{3}-\frac{x}{2}\right|=\frac{1}{2}\left|\frac{2}{3}-x\right|=\frac{1}{2}\left|x-\frac{2}{3}\right|$. So, if $\left|x-\frac{2}{3}\right|<\delta$, then $\left|f(x)-\frac{2}{3}\right|<\delta$. Therefore, $\delta=\varepsilon$ is what we are looking for.
(b) Hence determine whether $f(x)$ is continuous at $\frac{2}{3}$.

Solution. Since $f\left(\frac{2}{3}\right)=\frac{2}{3}$, the result of (a) means that for any $\varepsilon>0$ there exists $\delta>0$ such that for any x satisfying $\left|x-\frac{2}{3}\right|<\delta$ we have $\left|f(x)-f\left(\frac{2}{3}\right)\right|<\varepsilon$. But this means (by definition of continuity) that f is continuous at $\frac{2}{3}$.
3. Let f be a function defined and continuous on $[0,1]$. Assume also that $f(0)<0$ and $f(1)>0$. Let $x_{0}=\inf \{x \in[0,1] \mid f(x)>0\}$. Prove that $f\left(x_{0}\right)=0$.

Solution. Assume that $f\left(x_{0}\right) \neq 0$. Then, by definition of continuity at x_{0} applied for $\varepsilon=\left|f\left(x_{0}\right)\right|$, there exists $\delta>0$ such that for any $x \in[0,1]$ satisfying $\left|x-x_{0}\right|<\delta$ we have $\left|f(x)-f\left(x_{0}\right)\right|<\left|f\left(x_{0}\right)\right|$. The latter in particular means that $f(x)$ has the same sign as $f\left(x_{0}\right)$ when $x \in[0,1]$ and $\left|x-x_{0}\right|<\delta$ (cf. Exercise 4 for Feb 4 class).

Now consider two cases: $f\left(x_{0}\right)>0$ and $f\left(x_{0}\right)<0$. If $f\left(x_{0}\right)>0$, we get that $f(x)>0$ when $x \in[0,1]$ and $\left|x-x_{0}\right|<\delta$. Notice that since $f(0)<0$, we have that 0 is not in the δ-neighborhood of x_{0}, and it follows that $x_{0}-\frac{\delta}{2}>0$. Since $x_{0}-\frac{\delta}{2}$ is both in $[0,1]$ and δ-neighborhood of x_{0}, we get that $f\left(x_{0}-\frac{\delta}{2}\right)>0$, which contradicts x_{0} being the infinum of $\{x \in[0,1] \mid f(x)>0\}$.
Similarly, if $f\left(x_{0}\right)<0$, we have that $f(x)<0$ when $x \in[0,1]$ and $\left|x-x_{0}\right|<\delta$. Since $f(1)>0$, it follows that $x_{0}+\delta \leq 1$, and the interval $\left[x_{0}, x_{0}+\delta\right)$ is completely contained in $[0,1]$. Therefore, f is well-defined and negative on $\left[x_{0}, x_{0}+\delta\right)$. But by definition of x_{0}, the function f is non-positive on $\left[0, x_{0}\right)$ as well. So, we have that $f \leq 0$ on $\left[0, x_{0}+\delta\right)$, and $x_{0}+\delta$ is a lower bound for $\{x \in[0,1] \mid f(x)>0\}$. But this contradicts x_{0} being the greatest lower bound of this set.
So, we get a contradiction in both cases $f\left(x_{0}\right)>0$ and $f\left(x_{0}\right)<0$, and it follows that $f\left(x_{0}\right)=0$.
4. Let $f(x)$ be a function defined for any $x \in \mathbb{R}$ and continuous on $(0,1)$. Assume also that there exist (finite) limits $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$. Prove that $f(x)$ is bounded on $(0,1)$.

Solution. Let $L_{0}=\lim _{x \rightarrow 0} f(x)$. Applying the definition of limit for $\varepsilon=1$, we get that there exists δ such that for any $x \in(0, \delta)$ we have $\left|f(x)-L_{0}\right|<1$, i.e., $L_{0}-1<f(x)<L_{0}+1$.

Similarly, let $L_{1}=\lim _{x \rightarrow 1} f(x)$. Then there exists δ^{\prime} such that for any $x \in$ $\left(1-\delta^{\prime}, 1\right)$ we have $L_{1}-1<f(x)<L_{1}+1$.
So, $f(x)$ is bounded in $(0, \delta)$ and ($1-\delta^{\prime}, 1$). Furthermore, $f(x)$ is continuous in $\left[\delta, 1-\delta^{\prime}\right]$, so it is bounded in that interval as well. (By making δ and δ^{\prime} smaller if necessary, we can make δ smaller than $1-\delta^{\prime}$, so that the interval $\left[\delta, 1-\delta^{\prime}\right]$ is well-defined.) Then it follows that f is bounded in $(0,1)$. Namely, if m and M are some lower and upper bounds for f in $\left[\delta, 1-\delta^{\prime}\right]$, then

$$
\min \left(m, L_{0}-1, L_{1}-1\right) \leq f(x) \leq \max \left(M, L_{0}+1, L_{1}+1\right)
$$

for any $x \in(0,1)$.
5. Let f be a differentiable function on \mathbb{R} which has infinitely many zeros (i.e., there are infinitely many points $x \in \mathbb{R}$ such that $f(x)=0$). Show that its derivative $f^{\prime}(x)$ also has infinitely many zeroes.

Solution. Assume that f^{\prime} has finitely many, say, k, zeros (where k is a non-negative integer). Consider the $k+1$ intervals I_{1}, \ldots, I_{k+1} obtained by removing the zeros of f^{\prime} from the real line. Then f has at most one zero in each of the intervals I_{j}. Indeed, if there are two zeros of f in I_{j}, then by Rolle's
theorem there is a zero of f^{\prime} between them, which contradicts the construction of I_{j} 's.
So, f has at most one zero in each of the intervals I_{j}, and, in addition, it may vanish at the zeros of f^{\prime}. It follows that f has at most $2 k+1$ zeros in total. (One can improve this estimate to make it $k+1$, but this is not needed.) This contradicts f having infinitely many zeros. The obtained contradiction shows that f^{\prime} has infinitely many zeros.

