
MAT337, Real Analysis Midterm 2 – Solutions

1. (a) Let f be a function on (a, b), and let x0 ∈ (a, b). Let also L ∈ R. Define
what it means that limx→x0 f(x) = L.

Solution. We say that limx→x0 f(x) = L if for any ε > 0 there exists
δ > 0 such that for any x ∈ (a, b) satisfying 0 < |x − x0| < δ we have
|f(x) − L| < ε. (The condition x ∈ (a, b) can be omitted, because when
we say that |f(x) − L| < ε, this, in particular, means that f(x) is well-
defined.)

(b) Using your definition, prove that there exists no finite limit limx→0
1
x .

Solution. Assume that limx→0
1
x = L. Applying the above definition for

ε = 1 (any other value of ε would work too) we see that there exists δ > 0
such that for any x satisfying 0 < |x| < δ we have | 1x − L| < 1, i.e., 1

x ∈
(L− 1, L+ 1). But 0 < |x| < δ is equivalent to 1

x ∈ (−∞,−1
δ )∪ (1δ ,+∞).

So we get that any x in (−∞,−1
δ )∪ (1δ ,+∞) is also in (L−1, L+1). But

this is not possible. For instance, max(L+ 2, 1δ + 1) is in the first set, but
not in the second one. So, the definition of a limit cannot be satisfied,
and there is no finite limit limx→0

1
x .

2. (a) Let f(x) = max(1 − x/2, x). Show that for any ε > 0 there exists δ > 0
such that for any x ∈ (23 − δ,

2
3 + δ) we have |f(x)− 2

3 | < ε.

Solution. By definition of f(x) we have |f(x)− 2
3 | = |x−

2
3 | or |f(x)− 2

3 | =
|1 − x

2 −
2
3 | = |13 −

x
2 | = 1

2 |
2
3 − x| = 1

2 |x −
2
3 |. So, if |x − 2

3 | < δ, then
|f(x)− 2

3 | < δ. Therefore, δ = ε is what we are looking for.

(b) Hence determine whether f(x) is continuous at 2
3 .

Solution. Since f(23) = 2
3 , the result of (a) means that for any ε > 0

there exists δ > 0 such that for any x satisfying |x − 2
3 | < δ we have

|f(x)− f(23)| < ε. But this means (by definition of continuity) that f is
continuous at 2

3 .

3. Let f be a function defined and continuous on [0, 1]. Assume also that f(0) < 0
and f(1) > 0. Let x0 = inf{x ∈ [0, 1] | f(x) > 0}. Prove that f(x0) = 0.

Solution. Assume that f(x0) 6= 0. Then, by definition of continuity at x0
applied for ε = |f(x0)|, there exists δ > 0 such that for any x ∈ [0, 1] satisfying
|x− x0| < δ we have |f(x)− f(x0)| < |f(x0)|. The latter in particular means
that f(x) has the same sign as f(x0) when x ∈ [0, 1] and |x − x0| < δ (cf.
Exercise 4 for Feb 4 class).



Now consider two cases: f(x0) > 0 and f(x0) < 0. If f(x0) > 0, we get that
f(x) > 0 when x ∈ [0, 1] and |x− x0| < δ. Notice that since f(0) < 0, we have
that 0 is not in the δ-neighborhood of x0, and it follows that x0− δ

2 > 0. Since

x0 − δ
2 is both in [0, 1] and δ-neighborhood of x0, we get that f(x0 − δ

2) > 0,
which contradicts x0 being the infinum of {x ∈ [0, 1] | f(x) > 0}.
Similarly, if f(x0) < 0, we have that f(x) < 0 when x ∈ [0, 1] and |x−x0| < δ.
Since f(1) > 0, it follows that x0 + δ ≤ 1, and the interval [x0, x0 + δ) is
completely contained in [0, 1]. Therefore, f is well-defined and negative on
[x0, x0 + δ). But by definition of x0, the function f is non-positive on [0, x0)
as well. So, we have that f ≤ 0 on [0, x0 + δ), and x0 + δ is a lower bound for
{x ∈ [0, 1] | f(x) > 0}. But this contradicts x0 being the greatest lower bound
of this set.

So, we get a contradiction in both cases f(x0) > 0 and f(x0) < 0, and it
follows that f(x0) = 0.

4. Let f(x) be a function defined for any x ∈ R and continuous on (0, 1). Assume
also that there exist (finite) limits limx→0 f(x) and limx→1 f(x). Prove that
f(x) is bounded on (0, 1).

Solution. Let L0 = limx→0 f(x). Applying the definition of limit for ε = 1,
we get that there exists δ such that for any x ∈ (0, δ) we have |f(x)−L0| < 1,
i.e., L0 − 1 < f(x) < L0 + 1.

Similarly, let L1 = limx→1 f(x). Then there exists δ′ such that for any x ∈
(1− δ′, 1) we have L1 − 1 < f(x) < L1 + 1.

So, f(x) is bounded in (0, δ) and (1− δ′, 1). Furthermore, f(x) is continuous
in [δ, 1 − δ′], so it is bounded in that interval as well. (By making δ and δ′

smaller if necessary, we can make δ smaller than 1 − δ′, so that the interval
[δ, 1− δ′] is well-defined.) Then it follows that f is bounded in (0, 1). Namely,
if m and M are some lower and upper bounds for f in [δ, 1− δ′], then

min(m,L0 − 1, L1 − 1) ≤ f(x) ≤ max(M,L0 + 1, L1 + 1)

for any x ∈ (0, 1).

5. Let f be a differentiable function on R which has infinitely many zeros (i.e.,
there are infinitely many points x ∈ R such that f(x) = 0). Show that its
derivative f ′(x) also has infinitely many zeroes.

Solution. Assume that f ′ has finitely many, say, k, zeros (where k is a
non-negative integer). Consider the k + 1 intervals I1, . . . , Ik+1 obtained by
removing the zeros of f ′ from the real line. Then f has at most one zero in
each of the intervals Ij . Indeed, if there are two zeros of f in Ij , then by Rolle’s

2



theorem there is a zero of f ′ between them, which contradicts the construction
of Ij ’s.

So, f has at most one zero in each of the intervals Ij , and, in addition, it may
vanish at the zeros of f ′. It follows that f has at most 2k + 1 zeros in total.
(One can improve this estimate to make it k+ 1, but this is not needed.) This
contradicts f having infinitely many zeros. The obtained contradiction shows
that f ′ has infinitely many zeros.


