
MAT 337 – PROBLEM SET SOLUTIONS

The aim of this problem set is to investigate an alternative, more constructive, approach to
the intermediate value theorem. Let f be a function continuous on an interval [a, b]. Then the
intermediate value theorem says that for any ξ strictly between f(a) and f(b), there exists c ∈ [a, b]
such that f(c) = ξ. We already know that it is sufficient to prove this in the case f(a) < f(b). (If
f(a) > f(b), one considers the function g = −f , which satisfies g(a) < g(b).)

So, let f(a) < f(b). This implies f(a) < ξ < f(b). For any point x ∈ [a, b], we shall write a “+”
near this point if f(x) > ξ, and “-” if f(x) < ξ. Doing this for points a and b, we get the following
picture:

a b

− +

Let I1 = [a, b]. This interval has a property that the signs written at its endpoints are opposite.
Now, we will construct a sequence of nested intervals with this property. Consider the midpoint m1

of this interval I1. Then, either f(m1) = ξ, in which case we have proved the intermediate value
theorem, or we can assign a sign to m1 according to the above rule (“+” if f(m1) > ξ and “-” if
f(m1) < ξ). Then we get one of the following pictures:

a b

− ++

m1

or

a b

− +−
m1

In both cases, there is an interval with opposite signs at the endpoints: it is [a,m1] for the first
picture and [m1, b] for the second. We shall call this interval I2. Note that I2 ⊂ I1 by construction.
Further, we repeat the same procedure for I2: its midpoint m2 either satisfies f(m2) = ξ, or we
can find an interval I3 ⊂ I2 (having m2 as one of its endpoints) with opposite signs assigned to its
endpoints.

Proceeding in the same fashion, we get a sequence of nested intervals I1 ⊃ I2 ⊃ I3 ⊃ . . . . If
this process terminates, this means that we found c such that f(c) = ξ. Otherwise, the sequence of
nested intervals will be infinite.

1. Assume that the described process does not terminate after finitely many steps.

(a) Prove that the intersection
⋂

n≥1 In consists of one element.

Solution. Let ln be the length of the interval In. Then l1 = b − a, l2 = 1
2(b − a), and,

more generally, ln+1 = 1
2 ln. It follows by induction that ln = 1

2n−1 (b− a). In particular,
limn→∞ ln = 0. (Prove this.) So, by Problem 2(b) for Jan 27 class, we have that the
intersection

⋂
n≥1 In consists of one element.
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(b) Let c be the only element of
⋂

n≥1 In. Show that there exists a sequence xn → c such
that f(xn) < ξ for any n.

Solution. By construction, we assign different signs to endpoints of each interval In.
This means that f < ξ at one of the endpoints, and f > ξ at the other one. Let xn be
the endpoint of In with f < ξ. Then f(xn) < ξ. Furthermore, both xn and c lie in the
interval In, so |xn − c| ≤ ln, and −ln ≤ xn − c ≤ ln. Since limn→∞ ln = 0, it follows by
the squeeze theorem that limn→∞(xn − c) = 0, and thus limn→∞ xn = c.

(c) Show that there exists a sequence x̃n → c such that f(x̃n) > ξ for any n.

Solution. The construction is the same as in (b), but we take x̃n to be the endpoint of
In at which f > ξ.

(d) Hence prove that f(c) = ξ.

Solution. For the sequence xn constructed in (b), we have limn→∞ xn = c. Since f is
continuous, it follows that limn→∞ f(xn) = f(c). At the same time, we have f(xn) < ξ,
so it follows that limn→∞ f(xn) ≤ ξ (see Exercise C for Section 2.4), i.e., f(c) ≤ ξ.
Applying the same argument to the sequence x̃n constructed in part (c), we also get that
f(c) ≥ ξ. So f(c) = ξ.

2. (a) Assume that we apply the above procedure to f(x) = x2, [a, b] = [1, 2], and ξ = 2. Will
the process terminate after finitely many steps?

Solution. No. The process terminates on n’th step if the midpoint x of the interval In
satisfies f(x) = ξ. In our case this means x2 = 2. But since we start with the interval
[1, 2] and successively take midpoints, the midpoint of In is a rational number. At the
same time, we know that there are no rational solutions to the equation x2 = 2. So, the
process will not terminate after finitely many steps.

(b) By applying the above procedure to f(x) = x2, [a, b] = [1, 2], and ξ = 2, compute
√

2
with precision 10−3. You should prove that the number c̃ you found indeed satisfies
|c̃ −
√

2| < 10−3. (You cannot use the “actual” value of
√

2 generated by a computer /
calculator.)

Solution. By construction, we have that
√

2 ∈ In for every n. Therefore, if we take c̃ to
be the midpoint of In, then

|c̃−
√

2| ≤ 1

2
ln =

1

2n
.

So, if we take n = 10, we have

|c̃−
√

2| ≤ 1

1024
< 10−3,

as desired. We conclude that as c̃ we can take the midpoint of the interval I10. We have
I1 = [1, 2]. Since for the midpoint 3

2 we have (32)2 = 9
4 > 2, we should take I2 = [1, 32 ].
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Further,

(54)2 = 25
16 < 2⇒ I3 = [54 ,

3
2 ],

(118 )2 = 121
64 < 2⇒ I4 = [118 ,

3
2 ],

(2316)2 = 529
256 > 2⇒ I5 = [118 ,

23
16 ],

(4532)2 = 2025
1024 < 2⇒ I6 = [4532 ,

23
16 ],

(9164)2 = 8281
4096 > 2⇒ I7 = [4532 ,

91
64 ].

(181128)2 = 32761
16384 < 2⇒ I8 = [181128 ,

91
64 ],

(363256)2 = 131769
65536 > 2⇒ I9 = [181128 ,

363
256 ],

(725512)2 = 565625
262144 > 2⇒ I10 = [181128 ,

725
512 ]

So,
√

2 ≈ 1449
1024 with precision 10−3.

(c) Compare this algorithm for computing
√

2 with the algorithm given by Problem 5 in the
term test. Which algorithm allows you to compute

√
2 with precision 10−100 in a smaller

number of steps?

Solution. As we already explained, the above algorithm gives precision 2−n after n
steps. So, we will need log2(10100) ≈ 333 steps to get guaranteed precision 10−100. Now,
let us estimate the precision of the algorithm from Problem 5 of the term test. We have

xn+1 −
√

2 =
1

xn
+
xn
2
−
√

2 =
1

2xn
(2− 2

√
2xn + x2n) =

1

2xn
(xn −

√
2)2 < (xn −

√
2)2,

where we used that xn >
√

2 > 1
2 . So, if yn = xn −

√
2 is the error on n’th step (we

do not take the absolute value, since xn >
√

2), then yn+1 < y2n, i.e., the precision is
squared on each step. This is much better than what we had in the first algorithm. By
induction, we get

yn < y
(2n−1)
1 = (2−

√
2)(2

n−1) < 0.6(2
n−1)

(the estimate 2−
√

2 < 0.6 follows from the computation in (b)). So, we need

0.6(2
n−1) < 10−100 ⇔ 2n−1 > −100 log0.6 10 ≈ 450,

so n = 10 steps is enough to get the desired precision. (Of course, our estimates are
rather rough and can be improved.)
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