MAT 337 - PROBLEM SET SOLUTIONS

The aim of this problem set is to investigate an alternative, more constructive, approach to the intermediate value theorem. Let f be a function continuous on an interval $[a, b]$. Then the intermediate value theorem says that for any ξ strictly between $f(a)$ and $f(b)$, there exists $c \in[a, b]$ such that $f(c)=\xi$. We already know that it is sufficient to prove this in the case $f(a)<f(b)$. (If $f(a)>f(b)$, one considers the function $g=-f$, which satisfies $g(a)<g(b)$.)

So, let $f(a)<f(b)$. This implies $f(a)<\xi<f(b)$. For any point $x \in[a, b]$, we shall write a " + " near this point if $f(x)>\xi$, and "-" if $f(x)<\xi$. Doing this for points a and b, we get the following picture:

Let $I_{1}=[a, b]$. This interval has a property that the signs written at its endpoints are opposite. Now, we will construct a sequence of nested intervals with this property. Consider the midpoint m_{1} of this interval I_{1}. Then, either $f\left(m_{1}\right)=\xi$, in which case we have proved the intermediate value theorem, or we can assign a sign to m_{1} according to the above rule ("+" if $f\left(m_{1}\right)>\xi$ and "-" if $\left.f\left(m_{1}\right)<\xi\right)$. Then we get one of the following pictures:

or

In both cases, there is an interval with opposite signs at the endpoints: it is $\left[a, m_{1}\right]$ for the first picture and $\left[m_{1}, b\right]$ for the second. We shall call this interval I_{2}. Note that $I_{2} \subset I_{1}$ by construction. Further, we repeat the same procedure for I_{2} : its midpoint m_{2} either satisfies $f\left(m_{2}\right)=\xi$, or we can find an interval $I_{3} \subset I_{2}$ (having m_{2} as one of its endpoints) with opposite signs assigned to its endpoints.

Proceeding in the same fashion, we get a sequence of nested intervals $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$ If this process terminates, this means that we found c such that $f(c)=\xi$. Otherwise, the sequence of nested intervals will be infinite.

1. Assume that the described process does not terminate after finitely many steps.
(a) Prove that the intersection $\bigcap_{n \geq 1} I_{n}$ consists of one element.

Solution. Let l_{n} be the length of the interval I_{n}. Then $l_{1}=b-a, l_{2}=\frac{1}{2}(b-a)$, and, more generally, $l_{n+1}=\frac{1}{2} l_{n}$. It follows by induction that $l_{n}=\frac{1}{2^{n-1}}(b-a)$. In particular, $\lim _{n \rightarrow \infty} l_{n}=0$. (Prove this.) So, by Problem 2(b) for Jan 27 class, we have that the intersection $\bigcap_{n \geq 1} I_{n}$ consists of one element.
(b) Let c be the only element of $\bigcap_{n \geq 1} I_{n}$. Show that there exists a sequence $x_{n} \rightarrow c$ such that $f\left(x_{n}\right)<\xi$ for any n.

Solution. By construction, we assign different signs to endpoints of each interval I_{n}. This means that $f<\xi$ at one of the endpoints, and $f>\xi$ at the other one. Let x_{n} be the endpoint of I_{n} with $f<\xi$. Then $f\left(x_{n}\right)<\xi$. Furthermore, both x_{n} and c lie in the interval I_{n}, so $\left|x_{n}-c\right| \leq l_{n}$, and $-l_{n} \leq x_{n}-c \leq l_{n}$. Since $\lim _{n \rightarrow \infty} l_{n}=0$, it follows by the squeeze theorem that $\lim _{n \rightarrow \infty}\left(x_{n}-c\right)=0$, and thus $\lim _{n \rightarrow \infty} x_{n}=c$.
(c) Show that there exists a sequence $\tilde{x}_{n} \rightarrow c$ such that $f\left(\tilde{x}_{n}\right)>\xi$ for any n.

Solution. The construction is the same as in (b), but we take \tilde{x}_{n} to be the endpoint of I_{n} at which $f>\xi$.
(d) Hence prove that $f(c)=\xi$.

Solution. For the sequence x_{n} constructed in (b), we have $\lim _{n \rightarrow \infty} x_{n}=c$. Since f is continuous, it follows that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$. At the same time, we have $f\left(x_{n}\right)<\xi$, so it follows that $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq \xi$ (see Exercise C for Section 2.4), i.e., $f(c) \leq \xi$. Applying the same argument to the sequence \tilde{x}_{n} constructed in part (c), we also get that $f(c) \geq \xi$. So $f(c)=\xi$.
2. (a) Assume that we apply the above procedure to $f(x)=x^{2},[a, b]=[1,2]$, and $\xi=2$. Will the process terminate after finitely many steps?

Solution. No. The process terminates on n 'th step if the midpoint x of the interval I_{n} satisfies $f(x)=\xi$. In our case this means $x^{2}=2$. But since we start with the interval $[1,2]$ and successively take midpoints, the midpoint of I_{n} is a rational number. At the same time, we know that there are no rational solutions to the equation $x^{2}=2$. So, the process will not terminate after finitely many steps.
(b) By applying the above procedure to $f(x)=x^{2},[a, b]=[1,2]$, and $\xi=2$, compute $\sqrt{2}$ with precision 10^{-3}. You should prove that the number \tilde{c} you found indeed satisfies $|\tilde{c}-\sqrt{2}|<10^{-3}$. (You cannot use the "actual" value of $\sqrt{2}$ generated by a computer / calculator.)

Solution. By construction, we have that $\sqrt{2} \in I_{n}$ for every n. Therefore, if we take \tilde{c} to be the midpoint of I_{n}, then

$$
|\tilde{c}-\sqrt{2}| \leq \frac{1}{2} l_{n}=\frac{1}{2^{n}} .
$$

So, if we take $n=10$, we have

$$
|\tilde{c}-\sqrt{2}| \leq \frac{1}{1024}<10^{-3}
$$

as desired. We conclude that as \tilde{c} we can take the midpoint of the interval I_{10}. We have $I_{1}=[1,2]$. Since for the midpoint $\frac{3}{2}$ we have $\left(\frac{3}{2}\right)^{2}=\frac{9}{4}>2$, we should take $I_{2}=\left[1, \frac{3}{2}\right]$.

Further,

$$
\begin{gathered}
\left(\frac{5}{4}\right)^{2}=\frac{25}{16}<2 \Rightarrow I_{3}=\left[\frac{5}{4}, \frac{3}{2}\right], \\
\left(\frac{11}{8}\right)^{2}=\frac{121}{64}<2 \Rightarrow I_{4}=\left[\frac{11}{8}, \frac{3}{2}\right], \\
\left(\frac{23}{16}\right)^{2}=\frac{529}{256}>2 \Rightarrow I_{5}=\left[\frac{11}{8}, \frac{23}{16}\right], \\
\left(\frac{45}{32}\right)^{2}=\frac{2025}{1024}<2 \Rightarrow I_{6}=\left[\frac{45}{32}, \frac{23}{16}\right], \\
\left(\frac{91}{64}\right)^{2}=\frac{8281}{4296}>2 \Rightarrow I_{7}=\left[\frac{45}{32}, \frac{91}{64}\right] . \\
\left(\frac{181}{128}\right)^{2}=\frac{32761}{16384}<2 \Rightarrow I_{8}=\left[\frac{181}{128}, \frac{91}{64}\right], \\
\left(\frac{363}{256}\right)^{2}=\frac{131769}{6536}>2 \Rightarrow I_{9}=\left[\frac{181}{128}, \frac{363}{256}\right], \\
\left(\frac{725}{512}\right)^{2}=\frac{565625}{262144}>2 \Rightarrow I_{10}=\left[\frac{181}{128}, \frac{725}{512}\right]
\end{gathered}
$$

So, $\sqrt{2} \approx \frac{1449}{1024}$ with precision 10^{-3}.
(c) Compare this algorithm for computing $\sqrt{2}$ with the algorithm given by Problem 5 in the term test. Which algorithm allows you to compute $\sqrt{2}$ with precision 10^{-100} in a smaller number of steps?

Solution. As we already explained, the above algorithm gives precision 2^{-n} after n steps. So, we will need $\log _{2}\left(10^{100}\right) \approx 333$ steps to get guaranteed precision 10^{-100}. Now, let us estimate the precision of the algorithm from Problem 5 of the term test. We have

$$
x_{n+1}-\sqrt{2}=\frac{1}{x_{n}}+\frac{x_{n}}{2}-\sqrt{2}=\frac{1}{2 x_{n}}\left(2-2 \sqrt{2} x_{n}+x_{n}^{2}\right)=\frac{1}{2 x_{n}}\left(x_{n}-\sqrt{2}\right)^{2}<\left(x_{n}-\sqrt{2}\right)^{2},
$$

where we used that $x_{n}>\sqrt{2}>\frac{1}{2}$. So, if $y_{n}=x_{n}-\sqrt{2}$ is the error on n 'th step (we do not take the absolute value, since $x_{n}>\sqrt{2}$), then $y_{n+1}<y_{n}^{2}$, i.e., the precision is squared on each step. This is much better than what we had in the first algorithm. By induction, we get

$$
y_{n}<y_{1}^{\left(2^{n-1}\right)}=(2-\sqrt{2})^{\left(2^{n-1}\right)}<0.6^{\left(2^{n-1}\right)}
$$

(the estimate $2-\sqrt{2}<0.6$ follows from the computation in (b)). So, we need

$$
0.6^{\left(2^{n-1}\right)}<10^{-100} \Leftrightarrow 2^{n-1}>-100 \log _{0.6} 10 \approx 450,
$$

so $n=10$ steps is enough to get the desired precision. (Of course, our estimates are rather rough and can be improved.)

