MAT 337 - PROBLEM SET SOLUTIONS

The aim of this problem set is to investigate an alternative, more constructive, approach to
the intermediate value theorem. Let f be a function continuous on an interval [a,b]. Then the
intermediate value theorem says that for any £ strictly between f(a) and f(b), there exists ¢ € [a, D]
such that f(c) = & We already know that it is sufficient to prove this in the case f(a) < f(b). (If
f(a) > f(b), one considers the function g = — f, which satisfies g(a) < ¢(b).)

So, let f(a) < f(b). This implies f(a) < & < f(b). For any point = € [a, b], we shall write a “+”
near this point if f(z) > ¢, and “” if f(z) < £. Doing this for points a and b, we get the following
picture:
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Let I; = [a,b]. This interval has a property that the signs written at its endpoints are opposite.
Now, we will construct a sequence of nested intervals with this property. Consider the midpoint m;
of this interval I;. Then, either f(m;) = &, in which case we have proved the intermediate value
theorem, or we can assign a sign to m; according to the above rule (“4+” if f(m;) > £ and “” if
f(m1) < &). Then we get one of the following pictures:
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In both cases, there is an interval with opposite signs at the endpoints: it is [a, m1] for the first
picture and [mq,b] for the second. We shall call this interval I. Note that Io C I; by construction.
Further, we repeat the same procedure for I: its midpoint mo either satisfies f(mza) = &, or we
can find an interval I3 C Iy (having mg as one of its endpoints) with opposite signs assigned to its
endpoints.

Proceeding in the same fashion, we get a sequence of nested intervals Iy D Iy D I3 D .... If
this process terminates, this means that we found ¢ such that f(c) = £. Otherwise, the sequence of
nested intervals will be infinite.

1. Assume that the described process does not terminate after finitely many steps.
(a) Prove that the intersection (),,~; I, consists of one element.

Solution. Let [, be the length of the interval I,,. Then Iy =b—a, Iy = %(b —a), and,
more generally, [, = %ln. It follows by induction that I, = 2n#,l(b —a). In particular,
limy o0 I, = 0. (Prove this.) So, by Problem 2(b) for Jan 27 class, we have that the
intersection ()~ I,, consists of one element.



(b)

Let ¢ be the only element of (),,~; [,. Show that there exists a sequence x, — ¢ such
that f(z,) < ¢ for any n.

Solution. By construction, we assign different signs to endpoints of each interval I,,.
This means that f < £ at one of the endpoints, and f > £ at the other one. Let x,, be
the endpoint of I, with f < &. Then f(x,) < £. Furthermore, both z,, and c lie in the
interval I, so |z, — ¢| <, and -1, < x,, — ¢ < l,,. Since lim,,_,~ l, = 0, it follows by
the squeeze theorem that lim,, o (2, — ¢) = 0, and thus lim,, . x, = c.

Show that there exists a sequence Z,, — ¢ such that f(Z,) > £ for any n.

Solution. The construction is the same as in (b), but we take Z,, to be the endpoint of
I, at which f > €.

Hence prove that f(c) = &.

Solution. For the sequence z,, constructed in (b), we have lim,_,oc z, = ¢. Since f is
continuous, it follows that lim,_~ f(z,) = f(c). At the same time, we have f(z,) < &,
so it follows that lim, o f(x,) < € (see Exercise C for Section 2.4), ie., f(c) < &
Applying the same argument to the sequence ,, constructed in part (c), we also get that

fle) =& So f(e) =¢&.

Assume that we apply the above procedure to f(x) = 22, [a,b] = [1,2], and & = 2. Will
the process terminate after finitely many steps?

Solution. No. The process terminates on n’th step if the midpoint = of the interval I,
satisfies f(x) = €. In our case this means z? = 2. But since we start with the interval
[1,2] and successively take midpoints, the midpoint of I,, is a rational number. At the
same time, we know that there are no rational solutions to the equation z? = 2. So, the
process will not terminate after finitely many steps.

By applying the above procedure to f(x) = 2, [a,b] = [1,2], and ¢ = 2, compute /2
with precision 1072. You should prove that the number ¢ you found indeed satisfies
|6 — V2| < 1073, (You cannot use the “actual” value of v/2 generated by a computer /
calculator.)

Solution. By construction, we have that /2 € I,, for every n. Therefore, if we take & to

be the midpoint of I,,, then
1

6 — V2| < o

Iy =

N =

So, if we take n = 10, we have

1
¢ —V2| < — <1073
6= v2| < g7 <107
as desired. We conclude that as ¢ we can take the midpoint of the interval I;5. We have

I = [1,2]. Since for the midpoint 3 we have (2)? = 2 > 2, we should take I = [1, 3].



Further,

(=% <2=>B=1[}3
(§)P=¢<2=>L=[%13],
(B7 =B >2= =23,
() =151 <2=1Is =[5, %4,
(L) =88l > 0= [; = [35, 2]

(B8)7 = 855 <2= Iy = [355, 81,
(350)% = 8 > 2= Iy = [158. 550
(83)? = 553033 > 2 = Lo = [155, £39]

So, V2 ~ % with precision 1073,

Compare this algorithm for computing /2 with the algorithm given by Problem 5 in the
term test. Which algorithm allows you to compute /2 with precision 1071% in a smaller
number of steps?

Solution. As we already explained, the above algorithm gives precision 27" after n
steps. So, we will need log,(101%°) ~ 333 steps to get guaranteed precision 10719, Now,
let us estimate the precision of the algorithm from Problem 5 of the term test. We have

Tps1 — V2= i-Fain —V2= L(2—2\/§scn+:ci) = i(ﬂsn—\@)z < (zn — V2)?,
Ty 2 2z, 2z,

where we used that z,, > v/2 > % So, if y, = x, — v/2 is the error on n’th step (we

do not take the absolute value, since x, > v/2), then y,11 < 2, i.e., the precision is

squared on each step. This is much better than what we had in the first algorithm. By

induction, we get

<o = VD <0
(the estimate 2 — /2 < 0.6 follows from the computation in (b)). So, we need

0.6 <1079 & 2771 > —100log, ¢ 10 ~ 450,

so n = 10 steps is enough to get the desired precision. (Of course, our estimates are
rather rough and can be improved.)



