MATH534A, Problem Set 3, due Sep 18

All problems are worth the same number of points.

1. Prove that $\mathbb{R} P^{1}$ is diffeomorphic to S^{1}.
2. Let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ be the unit sphere, and let $p \in S^{2}$. Let also D be a 1'st order differential operator on S^{2} at p, i.e. a rule that assigns a real number to any function which is defined and smooth in some neighborhood of p and has the following properties:

- $D(c f)=c D(f)$ for any smooth function f and any $c \in \mathbb{R}$.
- $D(f+g)=D(f)+D(g)$ in the intersection of domains of f and g.
- $D(f g)=f(p) D(g)+D(f) g(p)$.

Show that there exists a vector $v \in \mathbb{R}^{3}$ tangent to S^{2} at p such that D is the differentiation in direction v.
3. The above construction defines an isomorphism i between $T_{p} S^{2}$ (defined as the space of 1 'st order differential operator on S^{2} at p) and the geometric tangent plane at p. Assume that p belongs to the northern hemisphere. Then we have a chart (x, y) around p, and the associated basis $\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \in T_{p} M$. Find $i\left(\frac{\partial}{\partial x}\right), i\left(\frac{\partial}{\partial y}\right)$.
4. Problem 3-8 from the textbook.

