MATH534A, Problem Set 5, due Oct 9

All problems are worth the same number of points.

- 1. Prove that the set of points in \mathbb{R}^2 satisfying the equation xy = 0 is not a smooth submanifold of \mathbb{R}^2 .
- 2. Let Z be a smooth manifold, Y be a smooth submanifold of Z, and X be a smooth submanifold of Y. Show that X is a smooth submanifold of Z. In other words, being a submanifold is a transitive relation.
- 3. (a) Show that the manifold $SO_n(\mathbb{R})$, consisting of $n \times n$ real orthogonal matrices with determinant 1, is connected.
 - (b) Show that the manifold $O_n(\mathbb{R}) \setminus SO_n(\mathbb{R})$, consisting of $n \times n$ real orthogonal matrices with determinant -1, is diffeomorphic to $SO_n(\mathbb{R})$ and hence also connected.
- 4. Show that U_n , the set of $n \times n$ unitary matrices, is a smooth submanifold of $\operatorname{Mat}_{n \times n}(\mathbb{C}) \simeq \mathbb{R}^{2n^2}$ and find its dimension.
- 5. Prove that $SO_2(\mathbb{R})$ is diffeomorphic to S^1 .