1. Prove that the set of points in \mathbb{R}^{2} satisfying the equation $x y=0$ is not a smooth submanifold of \mathbb{R}^{2}.

Solution: If this set of points were a smooth submanifold, then there would exist a function $f(x, y)$ smooth around $(0,0)$ such that the gradient of f is not zero and such that $f(x, y)=0$ on the set of points where $x y=0$. Since f vanishes on both axes, we should have that both partial derivatives vanish at $(0,0)$, but then the gradient of f would be zero there, contradicting our assumption.

Another approach: This set of points is not even a topological manifold. We can see this by removing $(0,0)$ from a connected open neighborhood U of the origin. The result is a set with four connected components, while if we remove a point from an open set in \mathbb{R} or \mathbb{R}^{n} for any n, we would be left with a set with 2 connected components (if we started with \mathbb{R}) or 1 component (for $n \geq 2$). Thus our neighborhood U is not homeomorphic to an open set in \mathbb{R}^{n} for any n.
2. Let Z be a smooth manifold, Y a smooth submanifold of Z, and let X be a smooth submanifold of Y. Show that X is a smooth submanifold of Z. In other words, being a submanifold is a transitive relation.

Solution: Let p be a point that lies in all three manifolds X, Y, and Z. Then there are local coordinates z_{1}, \ldots, z_{n} on Z such that Y is given by $z_{m+1}=\cdots=z_{n}=0$ near p. Furthermore, there are local coordinates y_{1}, \ldots, y_{m} on Y such that X is given by $y_{k+1}=\cdots=y_{m}=0$ near p.
Now the coordinates y_{1}, \ldots, y_{m} are functions of z_{1}, \ldots, z_{m}, so we can extend them to functions on an open set in Z since z_{1}, \ldots, z_{m} are functions on an open set in Z. Then we take $y_{1}, \ldots, y_{m}, z_{m}+1, \ldots, z_{n}$ as local coordinates for Z.
We have that the Jacobian of the transformation $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(y_{1}, \ldots, y_{m}, z_{m+1}, \ldots, z_{n}\right)$ is equal to the Jacobian of the transformation $\left(z_{1}, \ldots, z_{m}\right) \mapsto\left(y_{1}, \ldots, y_{m}\right)$ and hence nonzero. Now in these new coordinates (namely $y_{1}, \ldots, y_{m}, z_{m+1}, \ldots z_{n}$), X is given inside Z (near p) by linear equations (namely the equations $y_{k+1}=\cdots=y_{m}=0$) and hence X is a submanifold of Z.
3. (a) Show that the manifold $\mathrm{SO}_{n}(\mathbb{R})$, consisting of $n \times n$ real orthogonal matrices with determinant 1 , is connected.
Solution: By a theorem from linear algebra, we can write any orthogonal matrix A with determinant 1 as

$$
A=C^{-1} A_{c a n} C
$$

where $A_{\text {can }}$ is block-diagonal with blocks

$$
\left(\begin{array}{cc}
\cos a & -\sin a \\
\sin a & \cos a
\end{array}\right)
$$

(where the angles a may be different for different blocks) and possibly one 1×1 block with value 1 . Now consider the matrix $C^{-1} A_{c a n}^{t} C$, where $A_{c a n}^{t}$ is the same as $A_{\text {can }}$ except in each block we have multiplied the angle a by t. Then for any $t \in[0,1]$ this matrix lies in $\mathrm{SO}_{n}(\mathbb{R})$ and further for $t=1$ this is our original matrix A while for $t=0$, this matrix is the identity. Hence we have found a path in $\mathrm{SO}_{n}(\mathbb{R})$ connecting any matrix to the identity and thus $\mathrm{SO}_{n}(\mathbb{R})$ is path-connected and hence connected.
(b) Show that the manifold $\mathrm{O}_{n}(\mathbb{R}) \backslash \mathrm{SO}_{n}(\mathbb{R})$, consisting of $n \times n$ real orthogonal matrices with determinant -1 , is diffeomorphic to $\mathrm{SO}_{n}(\mathbb{R})$ and hence also connected.
Solution: Let B be a fixed orthogonal matrix with determinant -1 . Then the required diffeomorphism is $A \mapsto B A$. This map is smooth because it is the restriction of a linear map from the space of all $n \times n$ matrices to itself, where this linear map is given by the same formula. (See Corollary 2.5 of the online lecture notes.)

It remains to show that the inverse map $A \mapsto B^{-1} A$ is smooth as well. But this is true by exactly the same argument: that is, this map is again a restriction of a linear map $\operatorname{Mat}_{n \times n}(\mathbb{R}) \rightarrow \operatorname{Mat}_{n \times n}(\mathbb{R})$ and hence smooth.
4. Show that U_{n}, the set of $n \times n$ unitary matrices, is a smooth submanifold of Mat ${ }_{n \times n}(\mathbb{C}) \simeq \mathbb{R}^{2 n^{2}}$ and find its dimension.

Solution: The mapping Φ given by $\Phi(A)=A A^{*}$ (where A^{*} is the conjugate transpose of A) takes all complex $n \times n$ matrices to Hermitian matrices (i.e. matrices satisfying $B^{*}=B$). Let $\gamma(t)=A+t X$ be a curve in $\operatorname{Mat}_{n \times n}(\mathbb{C})$ with $\gamma(0)=A$ and $\gamma^{\prime}(0)=X$. We can calculate the differential of Φ as follows:

$$
\begin{aligned}
d_{A} \Phi(X) & =\left.\frac{d}{d t}\right|_{t=0}(A+t X)(A+t X)^{*} \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(A A^{*}+t A X^{*}+t X A^{*}+t^{2} X X^{*}\right) \\
& =A X^{*}+X A^{*}
\end{aligned}
$$

If we assume that A is non-degenerate, then this differential is a composition of two surjective maps, $X \mapsto X A^{*}$ and $X \mapsto X+X^{*}$ and hence is surjective. So our map Φ is a submersion (when restricted to non-degenerate matrices) and the preimage of the identity matrix must be a submanifold. Thus U_{n} is a submanifold of $\operatorname{Mat}_{n \times n}(\mathbb{C})$, as required.
Next we must find the dimension of U_{n}. We have just shown that $\Phi: \operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \operatorname{Herm}_{n \times n}$ is a submersion with U_{n} as a level set $\left(\operatorname{Herm}_{n \times n}\right.$ is the space of Hermitian matrices). Hence we have that $\operatorname{dim} \mathrm{U}_{n}=\operatorname{dim} \operatorname{Mat}_{n \times n}(\mathbb{C})-\operatorname{dim} \operatorname{Herm}_{n \times n}$. Clearly $\operatorname{dim} \operatorname{Mat}_{n \times n}(\mathbb{C})=2 n^{2}$, so we just need to find the dimension of the space of Hermitian matrices.
To see that $\operatorname{Herm}_{n \times n}$ has dimension n^{2}, note that we can write any Hermitian matrix as the sum of a (real) symmetric matrix and a (real) antisymmetric matrix multiplied by i. Now the space of symmetric matrices has dimension $n(n+1) / 2$ while the space of antisymmetric matrices has dimension $n(n-1) / 2$. Adding these two dimensions gives us n^{2}, as claimed.
Hence the dimension of U_{n} is $2 n^{2}-n^{2}=n^{2}$.
5. Prove that $\mathrm{SO}_{2}(\mathbb{R})$ is diffeomorphic to S^{1}.

Solution: As a set, $\mathrm{SO}(2)$ is just

$$
\left\{\left(\begin{array}{cc}
\cos a & -\sin a \\
\sin a & \cos a
\end{array}\right): a \in \mathbb{R}\right\}
$$

Now given the circle S^{1} in \mathbb{R}^{2}, we can map it to a set of matrices as follows: for any point $(x, y) \in S^{1}$,

$$
(x, y) \mapsto\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)
$$

This map is smooth because it is the restriction of a linear map $\mathbb{R}^{2} \rightarrow \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ (see Corollary 2.5 in the online lecture notes) and this map is obviously a bijection between S^{1} and $\mathrm{SO}_{2}(\mathbb{R})$ written as matrices. We can also write the inverse to this map:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto(a, c)
$$

This inverse map is also the restriction of a linear map, so it too is smooth and hence S^{1} and $\mathrm{SO}_{2}(\mathbb{R})$ are diffeomorphic.

