MATH534A, Problem Set 7, solutions

Problem 1. Let $F_{i}: M \rightarrow N_{i}$, where $i \in\{1, \ldots, k\}$, be smooth maps, and assume that one of them is an immersion. Show that the map $F: M \rightarrow N_{1} \times \cdots \times N_{k}$, given by $F(x)=\left(F_{1}(x), \ldots, F_{k}(x)\right)$, is an immersion.

Solution. Without loss of generality assume that $F_{1}: M \rightarrow N_{1}$ is an immersion. Let also $\pi_{1}: N_{1} \times$ $\cdots \times N_{k} \rightarrow N_{1}$ be the projection to the first factor. It follows from the construction of the smooth structure on $N_{1} \times \cdots \times N_{k}$ that the map π_{1} is smooth. Furthermore, we have $\pi_{1} \circ F=F_{1}$, so

$$
\begin{equation*}
d_{F(p)} \pi_{1} \circ d_{p} F=d_{p} F_{1} \tag{1}
\end{equation*}
$$

for any point $p \in M$. Now, assume that F is not an immersion. Then there is $p \in M$ and $v \in T_{p} M$, $v \neq 0$ such that $d_{p} F(\xi)=0$. Then, applying both sides of (1) to v, we get $d_{p} F_{1}(\xi)=0$, which contradicts the assumption that F_{1} is an immersion. So, F is an immersion.

Problem 2.

1. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a map whose components are given by

$$
f_{i}=\left[\begin{array}{ll}
x_{i} \sqrt{1+\sum_{i=k+1}^{n} x_{i}^{2}} & \text { for } i \leq k \\
x_{i} & \text { for } i>k
\end{array}\right.
$$

where $k \in\{1, \ldots, n\}$ is given. Show that F is a diffeomorphism.
2. Show that the restriction of F to a subset of \mathbb{R}^{n} given by $\sum_{i=1}^{k} x_{i}^{2}=1$ is an embedding.
3. Hence show that the subset of \mathbb{R}^{n} given by

$$
\begin{equation*}
\sum_{i=1}^{k} x_{i}^{2}-\sum_{j=k+1}^{n} x_{j}^{2}=1 \tag{2}
\end{equation*}
$$

is a submanifold diffeomorphic to $S^{k-1} \times \mathbb{R}^{n-k}$. (By definiton, S^{0} is a two-point set with discrete topology.)

Solution. 1. The map F is smooth, because its components are smooth. Furthermore, F has an inverse whose components are

$$
g_{i}=\left[\begin{array}{ll}
\frac{x_{i}}{\sqrt{1+\sum_{j=k+1}^{n} x_{j}^{2}}} & \text { for } i \leq k \\
x_{i} & \text { for } i>k
\end{array}\right.
$$

so F^{-1} is smooth as well, meaning that F is a diffeomorphism.
2. F is a diffeomorphism, and hence an embedding. Therefore, the restriction of F to any submanifold is an embedding as well.
3. One can find the image of the submanifold $S=\left\{\sum_{i=1}^{k} x_{i}^{2}=1\right\}$ under F by plugging in the components of F^{-1} for x_{i} 's. This gives

$$
\sum_{i=1}^{k} \frac{x_{i}^{2}}{1+\sum_{j=k+1}^{n} x_{j}^{2}}=1
$$

which is equivalent to (2). So, (2) defines a submanifold diffeomorphic to S. To complete the proof, we represent \mathbb{R}^{n} as $\mathbb{R}^{k} \times \mathbb{R}^{n-k}$, where a point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is identified with the pair $\left(\left(x_{1}, \ldots, x_{k}\right),\left(x_{k+1}, \ldots, x_{n}\right)\right) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$. In this representation, the submanifold $S \subset \mathbb{R}^{n}$ consists of pairs of the form (a, b), where $a \in \mathbb{R}^{k}$ belongs to the unit sphere S^{k-1}, and $b \in \mathbb{R}^{n-k}$ is arbitrary. So, S is diffeomorphic to a direct product $S^{k-1} \times \mathbb{R}^{n-k}$, and so is the manifold defined by (2), as desired.

Problem 3. Let M be a compact manifold, and let $C_{1}, C_{2} \subset M$ be its closed disjoint subsets. Let also f_{1}, f_{2} be smooth functions defined on some open neighborhoods of C_{1}, C_{2} respectively. Show that there exists a smooth function $f: M \rightarrow \mathbb{R}$ such that $\left.f\right|_{C_{1}}=f_{1},\left.f\right|_{C_{2}}=f_{2}$.

Solution. Let U_{1}, U_{2} be the domains of f_{1} and f_{2} respectively. Define also $U_{3}=M \backslash\left(C_{1} \cup C_{2}\right)$. Then U_{1}, U_{2}, U_{3} form an open cover of M. Let $\phi_{1}, \phi_{2}, \phi_{3}$ be a partition of unity subordinate to that cover. Define a function f by the rule

$$
\begin{equation*}
f=\phi_{1} f_{1}+\phi_{2} f_{2} \tag{3}
\end{equation*}
$$

where $\phi_{i} f_{i}$ is understood as 0 whenever $\phi_{i}=0$. To prove that f is smooth, it suffices to show that $\phi_{1} f_{1}, \phi_{2} f_{2}$ are both smooth. We prove that $f_{1} \phi_{1}$ is smooth, while the proof of smoothness for $\phi_{2} f_{2}$ is analogous. (Smoothness of such a function was in fact proved in class, but we also give the proof here for the sake of completeness.) To prove smoothness of $\phi_{1} f_{1}$, note that f_{1} and ϕ_{1} are both smooth in U_{1}, and hence so is their product. So it suffices to prove smoothness of $\phi_{1} f_{1}$ at each point $p \notin U_{1}$. For such points, we have $p \notin \operatorname{supp} \phi_{1}$ (since $\operatorname{supp} \phi_{1} \subset U_{1}$ by definition of partition of unity subordinate to a cover), so $p \in M \backslash \operatorname{supp} \phi_{1}$. The latter set is open ($\operatorname{since} \operatorname{supp} \phi_{1}$ is, by definition, closed) and for any its point we have $\phi_{1} f_{1}=0$ (since $\phi_{1}=0$ outside $\operatorname{supp} \phi_{1}$ by definition of support). So, there is an open neighborhood of p where $\phi_{1} f_{1}=0$, which means that $\phi_{1} f_{1}$ is smooth at p, as desired.

Addendum. The above solution is not perfectly correct, because function (3) in general does not satisfy $\left.f\right|_{C_{1}}=f_{1}$ and $\left.f\right|_{C_{2}}=f_{2}$. For example, assume that $U_{1}=U_{2}=M$. In this case, as a partition of unity subordinate to the cover U_{1}, U_{2}, U_{3}, we can take, for instance, $\phi_{1}=1, \phi_{2}=0, \phi_{3}=0$. Then $f=f_{1}$, which is not equal to f_{2} on C_{2}.

For (3) to satisfy $\left.f\right|_{C_{1}}=f_{1}$ and $\left.f\right|_{C_{2}}=f_{2}$, we need to have $\left.\phi_{1}\right|_{C_{2}}=0$ (which also implies $\left.\phi_{1}\right|_{C_{1}}=1$) and $\left.\phi_{2}\right|_{C_{1}}=0$ (which also implies $\left.\phi_{2}\right|_{C_{2}}=1$). This is true provided that

$$
\begin{equation*}
U_{1} \cap C_{2}=\emptyset, \quad U_{2} \cap C_{1}=\emptyset \tag{4}
\end{equation*}
$$

Although (4) might not be true for initially given U_{1}, U_{2} (and thus the above solution is, in general, not correct), it can be always arranged by shrinking U_{1}, U_{2}. Indeed, if the initially given U_{1} intersects C_{2}, then we can replace it with a smaller set $U_{1} \backslash C_{2}$, which is still an open neighborhood of C_{1}. Similarly, we can replace U_{2} with $U_{2} \backslash C_{1}$.

So, the above solution becomes correct if we assume (without loss of generality) that $U_{1} \cap C_{2}=\emptyset$ and $U_{2} \cap C_{1}=\emptyset$.

Problem 4. Let M be a compact manifold, N be its compact submanifold, and let $f: N \rightarrow \mathbb{R}$ be a smooth function. Show that there exists a smooth function $\tilde{f}: M \rightarrow \mathbb{R}$ such that $\left.\tilde{f}\right|_{N}=f$.

Solution. By definition of a submanifold, for any $p \in N$ there is a chart U_{p} in M containing p such that the intersection $U_{p} \cap N$ is given by linear equations in terms of the coordinates in U_{p}.

Taking such charts for every p, we get an open cover of N. Since N is compact, that cover admits a finite subcover, which we denote by U_{1}, \ldots, U_{k}. In each U_{i}, the submanifold N is given by equations $x_{n+1}=\cdots=x_{m}=0$ (where $m=\operatorname{dim} M, n=\operatorname{dim} N$), while x_{1}, \ldots, x_{n} form a local coordinate system on N. So, $\left.f\right|_{U_{i} \cap N}$ can be written as $f=f\left(x_{1}, \ldots, x_{n}\right)$, which allows one to extend f to U_{i} by setting

$$
\tilde{f}_{i}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

In this way, we get a bunch of functions $\tilde{f}_{i}: U_{i} \rightarrow \mathbb{R}$ such that

$$
\left.\tilde{f}_{i}\right|_{U_{i} \cap N}=f
$$

Now, take $U_{k+1}=M \backslash N$, and let $\phi_{1}, \ldots, \phi_{k+1}$ be a partition of unity subordinate to the cover U_{1}, \ldots, U_{k+1}. Then one can define the desired extension \tilde{f} by the formula

$$
\tilde{f}=\sum_{i=1}^{k} \phi_{i} f_{i}
$$

This function is smooth on M, as follows from the argument we used in Problem 3. Furthermore, for any $p \in N$ we either have $f_{i}(p)=f(p)$, or $\phi_{i}(p)=0$. In both cases, one has $\phi_{i}(p) f_{i}(p)=\phi_{i}(p) f(p)$, so

$$
\tilde{f}(p)=\sum_{i=1}^{k} \phi_{i}(p) f_{i}(p)=\sum_{i=1}^{k} \phi_{i}(p) f(p)=f(p) \sum_{i=1}^{k} \phi_{i}(p)=f(p)
$$

as desired.

Problem 5. Prove that any open cover of a second countable topological space admits a countable subcover.

Solution. Let X be a second countable topological space, \mathbb{B} be its countable base, and let \mathbb{U} be any cover of X. Let

$$
\tilde{\mathbb{B}}=\{B \in \mathbb{B} \mid \exists U \in \mathbb{U} \text { such that } B \subset U\}
$$

be the set of those elements of the base that are contained in at least one element of the cover. For any $B \in \tilde{\mathbb{B}}$, let U_{B} be any element of the cover such that $B \subset U_{B}$ (such U_{B} exists by construction of $\tilde{\mathbb{B}}\}$. Define

$$
\tilde{\mathbb{U}}=\left\{U_{B} \mid B \in \tilde{\mathbb{B}}\right\} .
$$

This is a countable subset of \mathbb{U}, so it remains to show that it is a cover. Take any $x \in X$. Then there is $U \in \mathbb{U}$ such that $x \in U$ (because \mathbb{U} is a cover). Furthermore, there exists $B \in \mathbb{B}$ such that $x \in B$, and $B \subset U$ (because \mathbb{B} is a base). Since $B \subset U$, it follows that $B \in \tilde{\mathbb{B}}$. So, there is an element of $\tilde{\mathbb{U}}$, namely U_{B}, which contains B. But this implies $x \in U_{B}$. So, every point of X belongs to some element of $\tilde{\mathbb{U}}$, which means that $\tilde{\mathbb{U}}$ is a cover of X, as desired.

