
MATH534A, Problem Set 7, solutions

Problem 1. Let Fi : M → Ni, where i ∈ {1, . . . , k}, be smooth maps, and assume that one of
them is an immersion. Show that the map F : M → N1×· · ·×Nk, given by F (x) = (F1(x), . . . , Fk(x)),
is an immersion.

Solution. Without loss of generality assume that F1 : M → N1 is an immersion. Let also π1 : N1×
· · · × Nk → N1 be the projection to the first factor. It follows from the construction of the smooth
structure on N1 × · · · ×Nk that the map π1 is smooth. Furthermore, we have π1 ◦ F = F1, so

dF (p)π1 ◦ dpF = dpF1 (1)

for any point p ∈ M . Now, assume that F is not an immersion. Then there is p ∈ M and v ∈ TpM ,
v 6= 0 such that dpF (ξ) = 0. Then, applying both sides of (1) to v, we get dpF1(ξ) = 0, which
contradicts the assumption that F1 is an immersion. So, F is an immersion.

Problem 2.

1. Let F : Rn → Rn be a map whose components are given by

fi =


xi

√√√√1 +
n∑

i=k+1

x2i for i ≤ k,

xi for i > k,

where k ∈ {1, . . . , n} is given. Show that F is a diffeomorphism.

2. Show that the restriction of F to a subset of Rn given by
∑k

i=1 x
2
i = 1 is an embedding.

3. Hence show that the subset of Rn given by

k∑
i=1

x2i −
n∑

j=k+1

x2j = 1 (2)

is a submanifold diffeomorphic to Sk−1×Rn−k. (By definiton, S0 is a two-point set with discrete
topology.)

Solution. 1. The map F is smooth, because its components are smooth. Furthermore, F has an
inverse whose components are

gi =


xi√

1 +
∑n

j=k+1 x
2
j

for i ≤ k,

xi for i > k,

so F−1 is smooth as well, meaning that F is a diffeomorphism.
2. F is a diffeomorphism, and hence an embedding. Therefore, the restriction of F to any

submanifold is an embedding as well.
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3. One can find the image of the submanifold S = {
∑k

i=1 x
2
i = 1} under F by plugging in the

components of F−1 for xi’s. This gives

k∑
i=1

x2i
1 +

∑n
j=k+1 x

2
j

= 1,

which is equivalent to (2). So, (2) defines a submanifold diffeomorphic to S. To complete the
proof, we represent Rn as Rk × Rn−k, where a point (x1, . . . , xn) ∈ Rn is identified with the pair
((x1, . . . , xk), (xk+1, . . . , xn)) ∈ Rk ×Rn−k. In this representation, the submanifold S ⊂ Rn consists of
pairs of the form (a, b), where a ∈ Rk belongs to the unit sphere Sk−1, and b ∈ Rn−k is arbitrary. So,
S is diffeomorphic to a direct product Sk−1 ×Rn−k, and so is the manifold defined by (2), as desired.

Problem 3. Let M be a compact manifold, and let C1, C2 ⊂ M be its closed disjoint subsets.
Let also f1, f2 be smooth functions defined on some open neighborhoods of C1, C2 respectively. Show
that there exists a smooth function f : M → R such that f |C1 = f1, f |C2 = f2.

Solution. Let U1, U2 be the domains of f1 and f2 respectively. Define also U3 = M \ (C1 ∪ C2).
Then U1, U2, U3 form an open cover of M . Let φ1, φ2, φ3 be a partition of unity subordinate to that
cover. Define a function f by the rule

f = φ1f1 + φ2f2, (3)

where φifi is understood as 0 whenever φi = 0. To prove that f is smooth, it suffices to show that
φ1f1, φ2f2 are both smooth. We prove that f1φ1 is smooth, while the proof of smoothness for φ2f2 is
analogous. (Smoothness of such a function was in fact proved in class, but we also give the proof here
for the sake of completeness.) To prove smoothness of φ1f1, note that f1 and φ1 are both smooth in
U1, and hence so is their product. So it suffices to prove smoothness of φ1f1 at each point p /∈ U1. For
such points, we have p /∈ suppφ1 (since suppφ1 ⊂ U1 by definition of partition of unity subordinate
to a cover), so p ∈M \ suppφ1. The latter set is open (since suppφ1 is, by definition, closed) and for
any its point we have φ1f1 = 0 (since φ1 = 0 outside suppφ1 by definition of support). So, there is an
open neighborhood of p where φ1f1 = 0, which means that φ1f1 is smooth at p, as desired.

Addendum. The above solution is not perfectly correct, because function (3) in general does not
satisfy f |C1 = f1 and f |C2 = f2. For example, assume that U1 = U2 = M . In this case, as a partition
of unity subordinate to the cover U1, U2, U3, we can take, for instance, φ1 = 1, φ2 = 0, φ3 = 0. Then
f = f1, which is not equal to f2 on C2.

For (3) to satisfy f |C1 = f1 and f |C2 = f2, we need to have φ1|C2 = 0 (which also implies φ1|C1 = 1)
and φ2|C1 = 0 (which also implies φ2|C2 = 1). This is true provided that

U1 ∩ C2 = ∅, U2 ∩ C1 = ∅. (4)

Although (4) might not be true for initially given U1, U2 (and thus the above solution is, in general,
not correct), it can be always arranged by shrinking U1, U2. Indeed, if the initially given U1 intersects
C2, then we can replace it with a smaller set U1 \ C2, which is still an open neighborhood of C1.
Similarly, we can replace U2 with U2 \ C1.

So, the above solution becomes correct if we assume (without loss of generality) that U1 ∩C2 = ∅
and U2 ∩ C1 = ∅.

Problem 4. Let M be a compact manifold, N be its compact submanifold, and let f : N → R be
a smooth function. Show that there exists a smooth function f̃ : M → R such that f̃ |N = f .

Solution. By definition of a submanifold, for any p ∈ N there is a chart Up in M containing
p such that the intersection Up ∩ N is given by linear equations in terms of the coordinates in Up.

2



Taking such charts for every p, we get an open cover of N . Since N is compact, that cover admits a
finite subcover, which we denote by U1, . . . , Uk. In each Ui, the submanifold N is given by equations
xn+1 = · · · = xm = 0 (where m = dimM , n = dimN), while x1, . . . , xn form a local coordinate system
on N . So, f |Ui∩N can be written as f = f(x1, . . . , xn), which allows one to extend f to Ui by setting

f̃i(x1, . . . , xm) = f(x1, . . . , xn).

In this way, we get a bunch of functions f̃i : Ui → R such that

f̃i|Ui∩N = f.

Now, take Uk+1 = M \ N , and let φ1, . . . , φk+1 be a partition of unity subordinate to the cover
U1, . . . , Uk+1. Then one can define the desired extension f̃ by the formula

f̃ =
k∑

i=1

φifi.

This function is smooth on M , as follows from the argument we used in Problem 3. Furthermore, for
any p ∈ N we either have fi(p) = f(p), or φi(p) = 0. In both cases, one has φi(p)fi(p) = φi(p)f(p), so

f̃(p) =

k∑
i=1

φi(p)fi(p) =

k∑
i=1

φi(p)f(p) = f(p)

k∑
i=1

φi(p) = f(p),

as desired.

Problem 5. Prove that any open cover of a second countable topological space admits a countable
subcover.

Solution. Let X be a second countable topological space, B be its countable base, and let U be
any cover of X. Let

B̃ = {B ∈ B | ∃U ∈ U such that B ⊂ U}

be the set of those elements of the base that are contained in at least one element of the cover. For
any B ∈ B̃, let UB be any element of the cover such that B ⊂ UB (such UB exists by construction of
B̃}. Define

Ũ = {UB | B ∈ B̃}.

This is a countable subset of U, so it remains to show that it is a cover. Take any x ∈ X. Then there
is U ∈ U such that x ∈ U (because U is a cover). Furthermore, there exists B ∈ B such that x ∈ B,
and B ⊂ U (because B is a base). Since B ⊂ U , it follows that B ∈ B̃. So, there is an element of Ũ,
namely UB, which contains B. But this implies x ∈ UB. So, every point of X belongs to some element
of Ũ, which means that Ũ is a cover of X, as desired.
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