MATH534A, Problem Set 8, due Nov 13

All problems are worth the same number of points.

- 1. Let M, N be smooth manifolds of the same dimension, $F: M \to N$ be a smooth map, and let $A \subset M$ have measure 0. Prove that F(A) has measure 0.
- 2. Let M be a smooth manifold, and let $A \subset M$ have measure 0. Prove that $A \neq M$.
- 3. Let M be a smooth manifold of dimension m, and let $\pi: TM \to M$ be the natural projection, $\pi(p, v) = p$. For a chart (U, ϕ) on M, define $\hat{\phi}: \pi^{-1}(U) \to \mathbb{R}^m \times \mathbb{R}^m$ by

$$\hat{\phi}(p,v) = (\phi(p), d_p \phi(v)).$$

- (a) Prove that there is a unique topology on TM such that for any chart (U, ϕ) on M the set $\pi^{-1}(U) \subset TM$ is open, and $\hat{\phi}$ maps $\pi^{-1}(U)$ homeomorphically to an open subset of \mathbb{R}^{2m} .
- (b) Show that TM with this topology is Hausdorff and second countable. Hence show that TM endowed with charts $(\pi^{-1}(U), \hat{\phi})$ is a smooth manifold.
- 4. (a) Let $F: M \to N$ be a smooth map. Consider the map $dF: TM \to TN$ given by $dF(p, v) = (F(p), d_pF(v))$. This map is sometimes called the *global differential of* F (but it is also okay to call it the differential of F). Prove that this map is smooth.
 - (b) Let $F: M \to \mathbb{R}^n$ be a smooth map. Consider the map $TM \to \mathbb{R}^n$ given by $(p, v) \mapsto d_p F(v)$. Prove that this map is smooth.
- 5. (a) Let $F: M \to N$ be a diffeomorphism, and let v be a smooth vector field on M. Prove that F_*v is a smooth vector field on N.
 - (b) Prove that this is in general not true if F is just a smooth bijection. **Hint:** Compute the pushforward of the vector field $\frac{\partial}{\partial x}$ by the map $\mathbb{R} \to \mathbb{R}$ given by $x \mapsto x^3$.
- 6. One says that the tangent bundle to M is *trivial* if there exists a diffeomorphism $\xi: TM \to M \times \mathbb{R}^m$ (where m is the dimension of M) which is of the form $\xi(p, v) = (p, ...)$, and moreover the restriction of ξ to T_pM is a vector space isomorphism between T_pM and $\{p\} \times \mathbb{R}^m$.
 - (a) Prove that M has trivial tangent bundle if and only if M is *parallelizable*, which means that it admits smooth vector fields v_1, \ldots, v_m which form a basis of T_pM at every point.
 - (b) Prove that \mathbb{R}^n and S^1 are parallelizable manifolds.

Remark: We will see later in the course that not all manifolds are parallelizable. In particular, S^2 and \mathbb{RP}^2 are not (for S^2 this follows e.g. from *hairy ball theorem*). Moreover, the tangent bundle for each of these manifolds is not diffeomorphic to the direct product of the manifold itself and \mathbb{R}^2 . (This is stronger then non-triviality of the tangent bundle, because triviality means that there exists a diffeomorphism $TM \to M \times \mathbb{R}^m$ with additional properties.)