## MATH534A, Problem Set 8, due Nov 13

All problems are worth the same number of points.

1. Let $M, N$ be smooth manifolds of the same dimension, $F: M \rightarrow N$ be a smooth map, and let $A \subset M$ have measure 0 . Prove that $F(A)$ has measure 0 .
2. Let $M$ be a smooth manifold, and let $A \subset M$ have measure 0 . Prove that $A \neq M$.
3. Let $M$ be a smooth manifold of dimension $m$, and let $\pi: T M \rightarrow M$ be the natural projection, $\pi(p, v)=p$. For a chart $(U, \phi)$ on $M$, define $\hat{\phi}: \pi^{-1}(U) \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{m}$ by

$$
\hat{\phi}(p, v)=\left(\phi(p), d_{p} \phi(v)\right)
$$

(a) Prove that there is a unique topology on $T M$ such that for any chart $(U, \phi)$ on $M$ the set $\pi^{-1}(U) \subset T M$ is open, and $\hat{\phi}$ maps $\pi^{-1}(U)$ homeomorphically to an open subset of $\mathbb{R}^{2 m}$.
(b) Show that $T M$ with this topology is Hausdorff and second countable. Hence show that $T M$ endowed with charts $\left(\pi^{-1}(U), \hat{\phi}\right)$ is a smooth manifold.
4. (a) Let $F: M \rightarrow N$ be a smooth map. Consider the map $d F: T M \rightarrow T N$ given by $d F(p, v)=$ $\left(F(p), d_{p} F(v)\right)$. This map is sometimes called the global differential of $F$ (but it is also okay to call it the differential of $F)$. Prove that this map is smooth.
(b) Let $F: M \rightarrow \mathbb{R}^{n}$ be a smooth map. Consider the map $T M \rightarrow \mathbb{R}^{n}$ given by $(p, v) \mapsto d_{p} F(v)$. Prove that this map is smooth.
5. (a) Let $F: M \rightarrow N$ be a diffeomorphism, and let $v$ be a smooth vector field on $M$. Prove that $F_{*} v$ is a smooth vector field on $N$.
(b) Prove that this is in general not true if $F$ is just a smooth bijection.

Hint: Compute the pushforward of the vector field $\frac{\partial}{\partial x}$ by the map $\mathbb{R} \rightarrow \mathbb{R}$ given by $x \mapsto x^{3}$.
6. One says that the tangent bundle to $M$ is trivial if there exists a diffeomorphism $\xi: T M \rightarrow$ $M \times \mathbb{R}^{m}$ (where $m$ is the dimension of $M$ ) which is of the form $\xi(p, v)=(p, \ldots)$, and moreover the restriction of $\xi$ to $T_{p} M$ is a vector space isomorphism between $T_{p} M$ and $\{p\} \times \mathbb{R}^{m}$.
(a) Prove that $M$ has trivial tangent bundle if and only if $M$ is parallelizable, which means that it admits smooth vector fields $v_{1}, \ldots, v_{m}$ which form a basis of $T_{p} M$ at every point.
(b) Prove that $\mathbb{R}^{n}$ and $S^{1}$ are parallelizable manifolds.

Remark: We will see later in the course that not all manifolds are parallelizable. In particular, $S^{2}$ and $\mathbb{R} \mathbb{P}^{2}$ are not (for $S^{2}$ this follows e.g. from hairy ball theorem). Moreover, the tangent bundle for each of these manifolds is not diffeomorphic to the direct product of the manifold itself and $\mathbb{R}^{2}$. (This is stronger then non-triviality of the tangent bundle, because triviality means that there exists a diffeomorphism $T M \rightarrow M \times \mathbb{R}^{m}$ with additional properties.)

