MATH534A, Exam 1 October 2, 2018

All problems are worth the same number of points.

- 1. Give a definition of a smooth manifold. You are only allowed to use terminology from multivariable calculus and point-set topology. Everything else should be explicitly defined.
- 2. Let S^2 be the standard unit sphere, $U \subset S^2$ be the northern hemisphere, and p be a point in U. Let also (x_1, x_2) be coordinates in U given by $x_1(x, y, z) = x$, $x_2(x, y, z) = y$, and let $\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}$ be the associated basis of T_pM . Compute $di(\frac{\partial}{\partial x_1})$, where $i: S^2 \to \mathbb{R}^3$ is the inclusion map, and di is its differential (at p).
- 3. Let S^2 be the standard unit sphere, $n \in S^2$ be its north pole, and let $\sigma: S^2 \setminus \{n\} \to \mathbb{C}$ be the stereographic projection from n (here we identify \mathbb{R}^2 and \mathbb{C}). Define a map $\phi: S^2 \to \mathbb{CP}^1$ by

$$\phi(p) = \begin{cases} [\sigma(p):1] & \text{if } p \neq n, \\ [1:0] & \text{if } p = n. \end{cases}$$

Prove that ϕ is a diffeomorphism.

4. Prove that the set $\{(x, y, z) \in \mathbb{RP}^2 \mid xy = z^2\}$ is a smooth submanifold of \mathbb{RP}^2 .