MATH534A, Solutions for Exam 2

Problem 1. Show that the map $S^{2} \rightarrow \mathbb{R}^{4}$ given by

$$
\begin{equation*}
(x, y, z) \mapsto\left(x y, x z, y^{2}-z^{2}, 2 y z\right) \tag{1}
\end{equation*}
$$

is an immersion.
Solution. Denote this map $S^{2} \rightarrow \mathbb{R}^{4}$ by F. By the way it is defined, it is a restriction to S^{2} of the map $\hat{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by same formula (1). So we have

$$
d_{p} F=\left.\left(d_{p} \hat{F}\right)\right|_{T_{p} S^{2}} \quad \forall p \in S^{2}
$$

We need to show that the map

$$
d_{p} F: T_{p} S^{2} \rightarrow \mathbb{R}^{4}
$$

is injective for any $p \in S^{2}$. To that end, we first study the map $d_{p} \hat{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$. Clearly, if the latter is injective, then its restriction to $T_{p} S^{2}$, that is the map $d_{p} F$, is injective as well. The matrix of $d_{p} \hat{F}$, written in natural bases of \mathbb{R}^{3} and \mathbb{R}^{4}, is

$$
\left(\begin{array}{ccc}
y & x & 0 \tag{2}\\
z & 0 & x \\
0 & 2 y & -2 z \\
0 & 2 z & 2 y
\end{array}\right)
$$

The 3×3 minor spanned by the rows $1,3,4$ is equal to $2 y\left(y^{2}+z^{2}\right)$. This is not zero provided that $y \neq 0$. Similarly, the minor spanned by the last three rows is equal to $2 z\left(y^{2}+z^{2}\right)$, which is not zero for $z \neq 0$. So, if at least one of the coordinates y, z does not vanish, then $d_{p} \hat{F}$ is injective, and so is $d_{p} F$. Therefore, it remains to consider the case when $y=z=0$. For points on the sphere, this means $x= \pm 1$. The tangent plane to S^{2} at both points $(0,0,1)$ and $(0,0,-1)$ is spanned by the vectors $\frac{\partial}{\partial y}, \frac{\partial}{\partial z} \in \mathbb{R}^{3}$. Since $d_{p} F$ is the restriction of $d_{p} \hat{F}$ to $T_{p} S^{2}$, it follows that the matrix of $d_{p} F$ in the basis $\frac{\partial}{\partial y}, \frac{\partial}{\partial z}$ is obtained from matrix (2) of $d_{p} \hat{F}$ by taking the two last columns (to compute the matrix of $d_{p} F$ we only need to choose a basis in its domain $T_{p} S^{2}$, because its codomain \mathbb{R}^{4} has a natural basis). So, the matrix of $d_{p} \hat{F}$ is

$$
\left(\begin{array}{cc}
x & 0 \\
0 & x \\
2 y & -2 z \\
2 z & 2 y
\end{array}\right)=\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

This matrix has rank 2 , so $d_{p} F$ is injective at $(0,0, \pm 1)$, as desired.
Problem 2. Consider the map $\phi: \mathbb{R}^{2} \rightarrow S^{2}$ given by

$$
\begin{equation*}
x=\cos (u) \cos (v), \quad y=\cos (u) \sin (v), \quad z=\sin (u) \tag{3}
\end{equation*}
$$

Find the 1-form $\phi^{*} \alpha$, where α is the restriction to S^{2} of the 1 -form $x d y-y d x$.
Solution 1. Observe that (3) is not a coordinate representation of ϕ, because x, y, z are not coordinates on S^{2}. Instead, these formulas provide a coordinate representation of the composition $i \circ \phi$, where $i: S^{2} \rightarrow \mathbb{R}^{3}$ is the inclusion mapping. Furthermore, we have

$$
\phi^{*} \alpha=\phi^{*} i^{*}(x d y-y d x)=(i \circ \phi)^{*}(x d y-y d x)
$$

where in the first equality we used that restriction is the same as pull-back by the inclusion map, while in the second equality we used the relation

$$
(a \circ b)^{*}=b^{*} a^{*},
$$

which is true for any smooth maps a, b (such that the domain of a coincides with the codomain of b). The latter relation is true because

$$
d(a \circ b)=d a \circ d b,
$$

while the pull-back is defined as the dual of the differential.
So, since the coordinate representation of $i \circ \phi$ is (3), it follows that the desired form can be obtained from $x d y-y d x$ by plugging in $x=\cos (u) \cos (v), y=\cos (u) \sin (v)$. A direct computation gives

$$
(i \circ \phi)^{*}(x d y-y d x)=\cos ^{2}(u) d v .
$$

Solution 2. We compute the desired form step by step, first by restricting to S^{2}, then by pulling back. In the open northern hemisphere, we have (graph) coordinates s, t on S^{2} such that the inclusion mapping $S^{2} \rightarrow \mathbb{R}^{3}$ is given by $x=s, y=t, z=\sqrt{1-s^{2}-t^{2}}$. The restriction α of $x d y-y d x$ to the northern hemisphere is obtained by a direct substitution $x=s, y=t$, which gives $\alpha=s d t-t d s$. To compute $\phi^{*} \alpha$, we plug in the coordinate representation of the map ϕ, which is $s=\cos (u) \cos (v), t=\cos (u) \sin (v)$. This gives $\phi^{*} \alpha=\cos ^{2}(u) d v$ for all points $p \in \mathbb{R}^{2}$ such that $\phi(p)$ is in the open northern heimisphere. Analogously, $\phi^{*} \alpha=\cos ^{2}(u) d v$ for all points $p \in \mathbb{R}^{2}$ such that $\phi(p)$ is in the open southern heimisphere (the only difference between the northern and southern hemispheres is the sign of z, but z does not enter the expression $x d y-y d x)$. So, $\phi^{*} \alpha=\cos ^{2}(u) d v$, possibly except for the points mapping to the equator, i.e. points with $\sin (u)=0$. At the same time, the form $\phi^{*} \alpha$ is smooth and in particular continuous (i.e. its coefficients in the basis $d u, d v$ are continuous functions), so we must have $\phi^{*} \alpha=\cos ^{2}(u) d v$ everywhere.

Solution 3. By definition, for any $\xi \in T_{p} \mathbb{R}^{2}$, we have

$$
\phi^{*} \alpha(\xi)=\alpha\left(d_{p} \phi(\xi)\right) .
$$

To find the coordinates of $\phi^{*} \alpha$ in the basis $d u, d v$, we need to compute the values of that form on the vectors $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}$. So, the $d u$ coefficient is

$$
\phi^{*} \alpha\left(\frac{\partial}{\partial u}\right)=\alpha\left(d_{p} \phi\left(\frac{\partial}{\partial u}\right)\right)=\alpha\left(-\sin (u) \cos (v) \frac{\partial}{\partial x}-\sin (u) \sin (v) \frac{\partial}{\partial y}+\cos (u) \frac{\partial}{\partial z}\right) .
$$

Here we used that $d_{p} \phi\left(\frac{\partial}{\partial u}\right)$ is given by the first column of the Jacobian matrix of ϕ.
Further, by definition of restriction, the value of α at a tangent vector to S^{2} is the same as the value of $x d y-y d x$ at the same vector, so

$$
\begin{aligned}
& \alpha\left(-\sin (u) \cos (v) \frac{\partial}{\partial x}-\sin (u) \sin (v) \frac{\partial}{\partial y}+\cos (u) \frac{\partial}{\partial z}\right) \\
& =(x d y-y d x)\left(-\sin (u) \cos (v) \frac{\partial}{\partial x}-\sin (u) \sin (v) \frac{\partial}{\partial y}+\cos (u) \frac{\partial}{\partial z}\right) \\
& =y \sin (u) \cos (v)-x \sin (u) \sin (v) .
\end{aligned}
$$

Since we are applying α to a tangent vector at the point $\phi(p)$, we should evaluate the coefficients of α at that point. So, in the latter expression we set $x=\cos (u) \cos (v), y=\cos (u) \sin (v)$, which shows that the $d u$ coefficient of $\phi^{*} \alpha$ vanishes. A similar computation shows that the $d v$ coefficient is $\cos ^{2}(u)$, so $\phi^{*} \alpha=\cos ^{2}(u) d v$.

Problem 3. Let M be a compact manifold, and let $C \subset M$ be its closed subset. Let also v be a smooth vector field defined on some open set $U \supset C$. Show that there exists a smooth vector field \hat{v} on M such that $\left.\hat{v}\right|_{C}=v$.

Solution. Let $U_{1}=U, U_{2}=M \backslash C$. Then U_{1}, U_{2} is an open cover of M. So, there exists a partition of unity f_{1}, f_{2} subordinate to this cover. Define

$$
\hat{v}(p)=\left\{\begin{array}{l}
f_{1}(p) v(p), \quad \text { if } p \in U_{1} \\
0, \quad \text { if } p \notin U_{1}
\end{array}\right.
$$

Then \hat{v} is a vector field, and at any point $p \in C$ we have

$$
\hat{v}(p)=f_{1}(p) v(p)=v(p)
$$

where we used that $f_{1}+f_{2}=1$, and $f_{2}=0$ outside of $U_{2}=M \backslash C$, i.e. in C. So, it remains ti show that \hat{v} is smooth. This is so for points $p \in U_{1}$ since in U_{1} we have $\hat{v}=f_{1} v$, while both f_{1} and v are smooth. On the other hand, if $p \notin U_{1}$, then $p \notin \operatorname{supp} f_{1}$ (since supp $f_{1} \subset U_{1}$ by definition of partition of unity subordinate to a cover), so $p \in M \backslash \operatorname{supp} f_{1}$. The latter set is open (since supp f_{1} is, by definition, closed) and for any its point we have $\hat{v}=0$ (since $f_{1}=0$ outside supp f_{1} by definition of support). So, there is an open neighborhood of p where $\hat{v}=0$, which means that \hat{v} is smooth at p, as desired.

