MATH534A, Solutions for Exam 2
Problem 1. Show that the map S? — R* given by

(2,9, 2) = (zy,22,9y° — 2%, 2y2) (1)

is an immersion.

Solution. Denote this map S? — R* by F. By the way it is defined, it is a restriction to S2 of
the map F': R® — R* given by same formula (1). So we have

dpF = (dpF)|7,52 Vp e S>.
We need to show that the map
d,F: T,S* — R*

is injective for any p € S?. To that end, we first study the map dpﬁ : R3 — R*. Clearly, if the latter
is injective, then its restriction to T},S2, that is the map d,F, is injective as well. The matrix of d,F,
written in natural bases of R? and R?, is

Yy oz 0

z 0 z

0 2y —2z | (2)
0 2z 2y

The 3 x 3 minor spanned by the rows 1,3,4 is equal to 2y(y? + 22). This is not zero provided that
y # 0. Similarly, the minor spanned by the last three rows is equal to 2z(y? + 2?), which is not zero
for z # 0. So, if at least one of the coordinates y, z does not vanish, then dpﬁ’ is injective, and so is
d,F'. Therefore, it remains to consider the case when y = 2z = 0. For points on the sphere, this means
x = +1. The tangent plane to S? at both points (0,0,1) and (0,0, —1) is spanned by the vectors
a%’ % € R3. Since d,F is the restriction of d,F to T,52, it follows that the matrix of d,F' in the basis

8%, % is obtained from matrix (2) of d,F' by taking the two last columns (to compute the matrix of

d,F we only need to choose a basis in its domain 7,52, because its codomain R* has a natural basis).
So, the matrix of d,F' is

T 0 +1 0
0o =z | [ 0o +1
2y —2z | 0 0
2z 2y 0 O

This matrix has rank 2, so d,F' is injective at (0,0,=£1), as desired.
Problem 2. Consider the map ¢: R? — S? given by
x = cos(u)cos(v), y=cos(u)sin(v), =z =sin(u). (3)
Find the 1-form ¢*«, where « is the restriction to S? of the 1-form xdy — ydx.

Solution 1. Observe that (3) is not a coordinate representation of ¢, because z,y, z are not
coordinates on S2. Instead, these formulas provide a coordinate representation of the composition
io ¢, where i: S — R? is the inclusion mapping. Furthermore, we have

¢ a = ¢ (xdy — ydr) = (i o ¢)"(vdy — ydx),

where in the first equality we used that restriction is the same as pull-back by the inclusion map, while
in the second equality we used the relation

(aob)" =b*a”,



which is true for any smooth maps a,b (such that the domain of a coincides with the codomain of b).
The latter relation is true because
d(aob) = daodb,

while the pull-back is defined as the dual of the differential.

So, since the coordinate representation of i o ¢ is (3), it follows that the desired form can be
obtained from xdy — ydx by plugging in 2 = cos(u) cos(v),y = cos(u)sin(v). A direct computation
gives

(i 0 ¢)*(xdy — ydx) = cos?(u)dv.

Solution 2. We compute the desired form step by step, first by restricting to S?, then by
pulling back. In the open northern hemisphere, we have (graph) coordinates s,t on S? such that
the inclusion mapping S? — R3 is given by © = s,y = t,2 = /1 — s2 — 2. The restriction a of
xdy — ydx to the northern hemisphere is obtained by a direct substitution x = s,y = ¢, which gives
a = sdt — tds. To compute ¢*a, we plug in the coordinate representation of the map ¢, which is
s = cos(u) cos(v), t = cos(u) sin(v). This gives ¢*a = cos?(u)dv for all points p € R? such that ¢(p) is
in the open northern heimisphere. Analogously, ¢*a = cos?(u)dv for all points p € R? such that ¢(p) is
in the open southern heimisphere (the only difference between the northern and southern hemispheres
is the sign of z, but z does not enter the expression zdy — ydz). So, ¢*a = cos?(u)dv, possibly except
for the points mapping to the equator, i.e. points with sin(u) = 0. At the same time, the form ¢*« is
smooth and in particular continuous (i.e. its coefficients in the basis du, dv are continuous functions),
so we must have ¢*a = cos?(u)dv everywhere.

Solution 3. By definition, for any £ € TpR2, we have

¢ a(€) = a(dpg(€))-

To find the coordinates of ¢*« in the basis du, dv, we need to compute the values of that form on the

vectors 7., 5,- S0, the du coefficient is

0 0 0 0
gb*a(%) = a(dpd)(%)) = «a(—sin(u) COS(U)% — sin(u) sin(v)a—y + cos(u)a).
Here we used that dpgb(%) is given by the first column of the Jacobian matrix of ¢.
Further, by definition of restriction, the value of « at a tangent vector to S? is the same as the
value of xdy — ydx at the same vector, so

a—sin(u) cos(v)% — sin(u) sin(v)a—y + cos(u)a)

= (zdy — ydz)(— sin(u) cos(’u)é% — sin(u) sin(v)aay + cos(u)é%)

= ysin(u) cos(v) — x sin(u) sin(v).

Since we are applying « to a tangent vector at the point ¢(p), we should evaluate the coefficients of
a at that point. So, in the latter expression we set © = cos(u) cos(v),y = cos(u)sin(v), which shows
that the du coefficient of ¢*a vanishes. A similar computation shows that the dv coefficient is cos?(u),
s0 ¢*a = cos?(u)dv.



Problem 3. Let M be a compact manifold, and let C' C M be its closed subset. Let also v be a
smooth vector field defined on some open set U D C. Show that there exists a smooth vector field ©
on M such that v|c = v.

Solution. Let Uy = U, Uy = M \ C. Then Uy, Us is an open cover of M. So, there exists a
partition of unity fi, fo subordinate to this cover. Define

3(p) = {fl(p)v(p)a if pe Uy,
0, ifp¢U.

Then © is a vector field, and at any point p € C' we have

o(p) = f1(p)v(p) = v(p),

where we used that fi; + fo = 1, and fo = 0 outside of Uy = M \ C, i.e. in C. So, it remains ti
show that ¢ is smooth. This is so for points p € U; since in U; we have © = fiv, while both f; and
v are smooth. On the other hand, if p ¢ Uy, then p ¢ supp f1 (since supp f1 C Up by definition of
partition of unity subordinate to a cover), so p € M \ supp f1. The latter set is open (since supp fi is,
by definition, closed) and for any its point we have © = 0 (since f; = 0 outside supp f1 by definition
of support). So, there is an open neighborhood of p where © = 0, which means that ¢ is smooth at p,
as desired.



