
MATH534A, Solutions for Exam 2

Problem 1. Show that the map S2 → R4 given by

(x, y, z) 7→ (xy, xz, y2 − z2, 2yz) (1)

is an immersion.

Solution. Denote this map S2 → R4 by F . By the way it is defined, it is a restriction to S2 of
the map F̂ : R3 → R4 given by same formula (1). So we have

dpF = (dpF̂ )|TpS2 ∀ p ∈ S2.

We need to show that the map
dpF : TpS

2 → R4

is injective for any p ∈ S2. To that end, we first study the map dpF̂ : R3 → R4. Clearly, if the latter
is injective, then its restriction to TpS

2, that is the map dpF , is injective as well. The matrix of dpF̂ ,
written in natural bases of R3 and R4, is

y x 0
z 0 x
0 2y −2z
0 2z 2y

 . (2)

The 3 × 3 minor spanned by the rows 1,3,4 is equal to 2y(y2 + z2). This is not zero provided that
y 6= 0. Similarly, the minor spanned by the last three rows is equal to 2z(y2 + z2), which is not zero
for z 6= 0. So, if at least one of the coordinates y, z does not vanish, then dpF̂ is injective, and so is
dpF . Therefore, it remains to consider the case when y = z = 0. For points on the sphere, this means
x = ±1. The tangent plane to S2 at both points (0, 0, 1) and (0, 0,−1) is spanned by the vectors
∂
∂y ,

∂
∂z ∈ R3. Since dpF is the restriction of dpF̂ to TpS

2, it follows that the matrix of dpF in the basis
∂
∂y ,

∂
∂z is obtained from matrix (2) of dpF̂ by taking the two last columns (to compute the matrix of

dpF we only need to choose a basis in its domain TpS
2, because its codomain R4 has a natural basis).

So, the matrix of dpF̂ is 
x 0
0 x
2y −2z
2z 2y

 =


±1 0
0 ±1
0 0
0 0

 .

This matrix has rank 2, so dpF is injective at (0, 0,±1), as desired.

Problem 2. Consider the map φ : R2 → S2 given by

x = cos(u) cos(v), y = cos(u) sin(v), z = sin(u). (3)

Find the 1-form φ∗α, where α is the restriction to S2 of the 1-form xdy − ydx.

Solution 1. Observe that (3) is not a coordinate representation of φ, because x, y, z are not
coordinates on S2. Instead, these formulas provide a coordinate representation of the composition
i ◦ φ, where i : S2 → R3 is the inclusion mapping. Furthermore, we have

φ∗α = φ∗i∗(xdy − ydx) = (i ◦ φ)∗(xdy − ydx),

where in the first equality we used that restriction is the same as pull-back by the inclusion map, while
in the second equality we used the relation

(a ◦ b)∗ = b∗a∗,
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which is true for any smooth maps a, b (such that the domain of a coincides with the codomain of b).
The latter relation is true because

d(a ◦ b) = da ◦ db,

while the pull-back is defined as the dual of the differential.
So, since the coordinate representation of i ◦ φ is (3), it follows that the desired form can be

obtained from xdy − ydx by plugging in x = cos(u) cos(v), y = cos(u) sin(v). A direct computation
gives

(i ◦ φ)∗(xdy − ydx) = cos2(u)dv.

Solution 2. We compute the desired form step by step, first by restricting to S2, then by
pulling back. In the open northern hemisphere, we have (graph) coordinates s, t on S2 such that
the inclusion mapping S2 → R3 is given by x = s, y = t, z =

√
1− s2 − t2. The restriction α of

xdy − ydx to the northern hemisphere is obtained by a direct substitution x = s, y = t, which gives
α = sdt − tds. To compute φ∗α, we plug in the coordinate representation of the map φ, which is
s = cos(u) cos(v), t = cos(u) sin(v). This gives φ∗α = cos2(u)dv for all points p ∈ R2 such that φ(p) is
in the open northern heimisphere. Analogously, φ∗α = cos2(u)dv for all points p ∈ R2 such that φ(p) is
in the open southern heimisphere (the only difference between the northern and southern hemispheres
is the sign of z, but z does not enter the expression xdy− ydx). So, φ∗α = cos2(u)dv, possibly except
for the points mapping to the equator, i.e. points with sin(u) = 0. At the same time, the form φ∗α is
smooth and in particular continuous (i.e. its coefficients in the basis du, dv are continuous functions),
so we must have φ∗α = cos2(u)dv everywhere.

Solution 3. By definition, for any ξ ∈ TpR2, we have

φ∗α(ξ) = α(dpφ(ξ)).

To find the coordinates of φ∗α in the basis du, dv, we need to compute the values of that form on the
vectors ∂

∂u ,
∂
∂v . So, the du coefficient is

φ∗α(
∂

∂u
) = α(dpφ(

∂

∂u
)) = α(− sin(u) cos(v)

∂

∂x
− sin(u) sin(v)

∂

∂y
+ cos(u)

∂

∂z
).

Here we used that dpφ( ∂
∂u) is given by the first column of the Jacobian matrix of φ.

Further, by definition of restriction, the value of α at a tangent vector to S2 is the same as the
value of xdy − ydx at the same vector, so

α(− sin(u) cos(v)
∂

∂x
− sin(u) sin(v)

∂

∂y
+ cos(u)

∂

∂z
)

= (xdy − ydx)(− sin(u) cos(v)
∂

∂x
− sin(u) sin(v)

∂

∂y
+ cos(u)

∂

∂z
)

= y sin(u) cos(v)− x sin(u) sin(v).

Since we are applying α to a tangent vector at the point φ(p), we should evaluate the coefficients of
α at that point. So, in the latter expression we set x = cos(u) cos(v), y = cos(u) sin(v), which shows
that the du coefficient of φ∗α vanishes. A similar computation shows that the dv coefficient is cos2(u),
so φ∗α = cos2(u)dv.
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Problem 3. Let M be a compact manifold, and let C ⊂M be its closed subset. Let also v be a
smooth vector field defined on some open set U ⊃ C. Show that there exists a smooth vector field v̂
on M such that v̂|C = v.

Solution. Let U1 = U , U2 = M \ C. Then U1, U2 is an open cover of M . So, there exists a
partition of unity f1, f2 subordinate to this cover. Define

v̂(p) =

{
f1(p)v(p), if p ∈ U1,

0, if p /∈ U1.

Then v̂ is a vector field, and at any point p ∈ C we have

v̂(p) = f1(p)v(p) = v(p),

where we used that f1 + f2 = 1, and f2 = 0 outside of U2 = M \ C, i.e. in C. So, it remains ti
show that v̂ is smooth. This is so for points p ∈ U1 since in U1 we have v̂ = f1v, while both f1 and
v are smooth. On the other hand, if p /∈ U1, then p /∈ supp f1 (since supp f1 ⊂ U1 by definition of
partition of unity subordinate to a cover), so p ∈M \ supp f1. The latter set is open (since supp f1 is,
by definition, closed) and for any its point we have v̂ = 0 (since f1 = 0 outside supp f1 by definition
of support). So, there is an open neighborhood of p where v̂ = 0, which means that v̂ is smooth at p,
as desired.
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