
MATH534B, Recommended Problems (Last Updated on April 25, 2019)

1. Show that the relation of homotopy among continuous maps X → Y , where X and Y are fixed
topological spaces, is an equivalence relation.

2. Show that homotopy equivalence of topological spaces is an equivalence relation.

3. Assume that X is a topopological space, and γ1, γ2 : [0, 1] → X are two paths in X such that
γ1(1) = γ2(0). Assume also that γ̃1 is homotopic to γ1 with fixed endpoints, while γ̃2 is homotopic
to γ2 with fixed endpoints. Show that the concatenations γ̃1γ̃2, γ1γ2 are homotopic with fixed
endpoints.

4. Assume that X and Y are homotopy equivalent topological spaces. Show that if X is path
connected, then so is Y .

5. Assume that a topological space X is contractible. Show that every point x ∈ X is a deformation
retract of X.

6. Parametrizing line intervals and circles in the following figure, give an accurate proof that the
depicted topological spaces are homotopy equivalent:
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7. Let γ1, γ2, γ3 : [0, 1] → X be paths in a topological space X. Assume also that γ1(1) = γ2(0),
γ2(1) = γ3(0). Shows that the paths (γ1 · γ2) · γ3 and γ1 · (γ2 · γ3) are homotopic with fixed
endpoints. Here γi · γj stands for the concatenation of paths,

(γi · γj)(t) =

γi(2t) if t ≤ 1

2
,

γj(2t− 1) if t ≥ 1

2
.

8. Assume that X and Y are topological spaces, and let K ⊂ X. Two continuous maps f, g : X → Y
are said to be homotopic relative to K if

(a) f(k) = g(k) for any k ∈ K.

(b) There exists a homotopy H : X×[0, 1]→ Y between f and g such that F (k, t) = g(k) = h(k)
for any k ∈ K, t ∈ [0, 1].

For example, homotopy with fixed endpoints between paths [0, 1]→ X is the same as homotopy
relative to {0, 1}.
Let p ∈ S1 be any point. Show that the fundamental group π1(X,x0) can be defined as the set
of maps f : S1 → X with f(p) = x0 modulo homotopies relative to {p}. Describe the group
operation on π1(X,x0) in terms of this definition.

9. Let γ : [0, 1] → S1 be a path. Say that α : [0, 1] → R is a continuous determination of the
polar angle of γ(t) if γ(t) = (cosα(t), sinα(t)) for any t ∈ [0, 1]. Show that if α1, α2 are two
continuous determinations of the polar angle of γ(t), then α1(t) − α2(t) = 2πk, where k is an
integer independent of t.
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10. Let γ be a loop in S1 based at x0, i.e. a continuous map γ : [0, 1]→ S1 such that γ(0) = γ(1) = x0.
Let also α : [0, 1]→ R be a continuous determination of the polar angle of γ(t), which means that
γ(t) = (cosα(t), sinα(t)) for any t ∈ [0, 1]. Recall that the number of times γ(t) goes around S1

is defined by the formula

N(γ) =
α(1)− α(0)

2π
.

Prove that if γ is smooth in (0, 1), then N(γ) is given by

N(γ) =
1

2π

∫ 1

0
γ∗dφ,

where the 1-form dφ on S1 is given by dφ = (xdy − ydx)|S1 .

11. Let γ : [0, 1]→ S1 be a path (not necessarily a loop) in S1, and let α : [0, 1]→ R be a continuous
determination of the polar angle of γ(t), which means that γ(t) = (cosα(t), sinα(t)) for any
t ∈ [0, 1]. Define

∆(γ) = α(1)− α(0).

Show that

(a) If γ1, γ2 : [0, 1]→ S1 are homotopic with fixed endpoints, then ∆(γ1) = ∆(γ2).

(b) If γ1, γ2 : [0, 1]→ S1 are such that γ2(0) = γ1(1), then ∆(γ1 · γ2) = ∆(γ1) + ∆(γ2).

12. Let γ1, γ2 : [0, 1]→ X be paths in a topological space X such that γ1(0) = γ2(0), γ1(1) = γ2(1).
Assume that the loop γ1 · γ−12 (where γ−12 (t) = γ2(1 − t)) is trivial in π1(X, γ1(0)). Show that
γ1, γ2 are homotopic with fixed endpoints.

13. Consider the set of paths in S1 starting at a given point x0. Say that two such paths are
equivalent if they have the same endpoint and are homotopic with fixed endpoints. Show that
the mapping ∆ defined in Exercise 11 is a bijection between such equivalence classes and R.

14. Let γ be a loop in R2 \ (0, 0) based at a certain point x0. Let also α : [0, 1]→ R be a continuous
determination of the polar angle of γ(t), which means that γ(t) = (r(t) cosα(t), r(t) sinα(t)) for
any t ∈ [0, 1] and an appropriate function r(t). Define the number of times γ(t) goes around the
origin by the formula

N(γ) =
α(1)− α(0)

2π
.

Show that the mapping N is well-defined on π1(R2 \ (0, 0), x0) and maps the latter group iso-
morphically to Z.

15. Let γ be a smooth loop in C\0. Show that number of times γ(t) goes around the origin (defined
in the preceding exercise) is given by the formula

N(γ) =
1

2πi

∫
γ

dz

z
.

16. Identify the circle with the set of complex numbers with absolute value 1. For the map f : S1 →
S1 given by f(z) = zn, where n ∈ Z, compute the induced homomorphism on π1(S

1, 1).

17. Prove Brouwer’s fixed point theorem in the 1-dimensional case: every continuous function
f : [0, 1]→ [0, 1] has a fixed point, i.e. a point x ∈ [0, 1] such that f(x) = x.

18. Does every continuous mapping of an open disc to itself have a fixed point?
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19. For a function f : C→ C, let

γf,r(t) =
f(re2πit)

f(r)
,

and let N(f, r) be the class of γf,r in π1(C∗, 1) (it is well defined provided that f does not
vanish at the circle of radius r centered at the origin). Note that π1(C∗) is isomorphic to Z
and we can fix this isomorphism by requiring that a loop going around the origin once in the
counterclockwise direction corresponds to 1. So, N(f, r) can be regarded as an integer. Compute

lim
r→∞

N(f, r),

where f is a rational function with numerator of degree p and denominator of degree q.

20. Show that for a complex-differentiable function f , the quantity N(f, r) defined in the previous
exercise is given by

N(f, r) =
1

2πi

∫
|z|=r

f ′(z)

f(z)
dz.

Hence show that if f is meromorphic in the disc Dr of radius r centered at the origin and has no
zeros or poles on the boundary of that disc, then N(f, r) is equal to the number of zeros of f in
Dr minus the number of poles of f in Dr (each zero and pole being counted with multiplicity).

21. Prove the following lemma that we used to compute the fundamental groups of spheres. Let
γ : [0, 1] → X be a continuous mapping, and let a1 < b1 < a2 < b2 < · · · < an < bn be
points in (0, 1). Let also γi : [ai, bi] → X be continuous mappings such that γi(ai) = γ(ai) and
γi(bi) = γ(bi). Define a new mapping γ̃ : [0, 1]→ X by

γ̃(t) =

[
γi(t) if there is i such that ai < t < bi,

γ(t) otherwise.

Prove that γ̃ is continuous. Also show that it does not have to be true if the number of intervals
[ai, bi] is infinite.

22. Exercise 1 for Section 1.1 in Hatcher.

23. Show that the torus with a hole (the hole is open and homeomorphic to a disc) does not retract
to its boundary circle.

24. Compute the fundamental group of a solid triangle whose sides are identified as shown in the
figure (here we use the standard convention: all sides with the same label are identified according
to the direction of the arrows):

a

aa

25. Prove that the space from the previous exercise is not a topological manifold.

26. Prove that quotient of Z ∗ Z by its commutator subgroup is isomorphic to Z⊕ Z.

27. Let 〈x〉, 〈y〉, 〈z〉 be free Abelian groups generated by elements x, y, z respectively. Show that
the elements xyz, xzy ∈ 〈x〉 ∗ 〈y〉 ∗ 〈z〉 are not conjugate to each other. Hint: show that if G is
any group, and g1, g2, g3 ∈ G, then there is a homomorphism φ : 〈x〉 ∗ 〈y〉 ∗ 〈z〉 → G such that
φ(x) = g1, φ(y) = g2, φ(z) = g3. So, if xyz, xzy are conjugate to each other in 〈x〉 ∗ 〈y〉 ∗ 〈z〉,
then g1g2g3 and g1g3g2 are conjugate to each other in G. Therefore, it suffices to find any group
G and any three elements g1, g2, g3 ∈ G such that g1g2g3 and g1g3g2 are not conjugate to each
other.
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28. Let K be the unit square, and let f : K → X be its map to a topological space X. Assume also
that where A,B ⊂ X are open subset such that A ∪ B = X. Show that there exists a finite
rectangular grid on K such that each (closed) rectangle Kij of the grid satisfies f(Kij) ⊂ A or
f(Kij) ⊂ B. By a rectangular grid we mean the following: choose two partitions 0 = t0 < t1 <
· · · < tn−1 < tn = 1, 0 = s0 < s1 < · · · < sn−1 < sn = 1 of the unit interval. Then the associated
grid on K is the partition

K =

n⋃
i=1

n⋃
j=1

Kij

with Kij = [ti−1, ti]× [sj−1, sj ].

29. The surface S shown in the figure is obtained from two tori by removing a disc from each of
them and gluing the resulting surfaces along the boundary (this operation is known as taking
the connected sum of two tori). This surface is often referred to as the pretzel.

γ

x0

S

Compute π1(S, x0). Determine whether the class of γ in π1(S, x0) is equal to the identity.

30. Compute the fundamental group of the union of edges of a cube.

31. Compute the fundamental group of the 3-space with 3 straight lines removed. How does the
answer depend on the mutual position of the lines?

32. Let p : X̃ → X be a local homeomorphism. Assume also that X̃ is compact. Show that p is a
finite covering.

33. Identify the 2-dimensional torus T 2 with S1×S1. Then each point in T 2 can be written as (p, q)
with p, q ∈ S1. Let φ be the polar angle of p, and ψ be the polar angle of q. Then φ and ψ
can be thought of as coordinates on the torus (longitude and latitude), both defined modulo 2π.
Consider the following map of T 2 to itself:

(φ, ψ) 7→ (φ+ ψ, φ+ 3ψ).

Show that this map is a covering, compute its degree, and describe all deck transformations.

34. Prove that the mapping C \{±1,±2} → C \{±2} given by z 7→ z3− 3z is a covering. Show that
it admits no non-trivial deck transformations.

35. Construct a triangulation and compute the simplicial homology for the following spaces: closed
interval, closed two-dimensional disk, cylinder, Moebius band.

36. Consider the union of faces of a tetrahedron as a triangulation of the sphere S2. Compute the
simplicial homology of the sphere using that triangulation.

37. The Euler characteristic of a topological space X is defined as

χ(X) = β0 − β1 + β2 − . . . ,

where βi’s are Betti numbers and X is such that the sum in the right-hand side has only finite
many non-zero terms. Prove that for a topological space X that admits a triangulation with
finite number of simplices one has

χ(X) = number of 0-simplices− number of 1-simplices + number of 2-simplices− . . . .
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38. Prove that the Euler characteristic of a 2-sphere is well-defined (i.e. does not depend on the
choice of the triangulation) and is equal to 2. Prove Euler’s formula for a convex polytope:

number of vertices− number of edges + number of faces = 2.

39. Prove that singular homology groups of homeomorphic spaces are isomorphic.

40. Prove the five lemma: in the commutative diagram of Abelian groups below, if the two rows
are exact, while the two leftmost and two rightmost vertical arrows are isomorphisms, then the
middle vertical arrow is an isomorphism as well.

A B C D E

A′ B′ C ′ D′ E′

41. Prove that a short exact sequence 0→ An → Bn → Cn → 0 of chain complexes gives rise to the
following long exact sequence of homology groups:

· · · → Hn(A)→ Hn(B)→ Hn(C)→ Hn−1(A)→ . . .

42. Let X be a topological space, and let Y ⊂ X be an embedded circle which is a boundary in
the following sense: the map i∗ : H1(Y ) → H1(X), induced by the inclusion Y → X, takes
the fundamental class of Y to 0. Assume also that Y has an open neighborhood in X which
deformation retracts to Y . Express the homology groups of X/Y in terms of homology groups
of X.

43. Consider the region R of R3 bounded by the pretzel from Problem 29 (loosely speaking, R
consists of points that are inside the pretzel). Let X be the space obtained from two copies of
R by identifying their boundaries (via the identity map).

(a) Prove that X is a topological 3-dimensional manifold.

(b) Using the Mayer-Vietoris sequence, compute the homology groups of X (with coefficients
in Z).

44. Let D ⊂ Rn be an open subset bounded by a smooth hypersurface S. Let also Vn be the volume
of a unit ball in Rn. Prove that the expression

1

nVn

∫
S

∑n
i=1(−1)i+1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

(
∑n

i=1 x
2
i )
n/2

is equal to 1 if the region D contains the origin, and 0 otherwise (we assume that S does not
contain the origin, so the above integral is well-defined).

45. Prove that for a 2π-periodic function f(x) one has∫ a+2π

a
f(x)dx =

∫ 2π

0
f(x)dx.

46. Prove that de Rham cohomology groups of diffeomorphic manifolds are isomorphic.

47. Let φ : M → N be a diffeomorphism between compact oriented n-dimensional manifolds. Show
that for any top degree-form ω ∈ Ωn(N) one has∫

N
ω = ±

∫
M
φ∗ω.

Moreover, the sign in the right-hand side is positive if φ is orientation-preserving, and negative
otherwise.
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48. Let M be a manifold, and let U, V ⊂ M be open subsets such that the closure V̄ is contained
in U . Let also f : U → R be a smooth function. Show that there exists a smooth function
F : M → R such that F |V = f .

6


