1. Let \(X \) and \(Y \) be homotopy equivalent topological spaces. Assume also that \(X \) has the following property: any two continuous maps \(S^2 \to X \) are homotopic to each other. Prove that \(Y \) has the same property.

2. Recall that the Möbius band is the space obtained from a rectangle by identifying a pair of its opposite sides as shown in the figure:

 \[
 \begin{array}{c}
 \text{a} \\
 \text{a}
 \end{array}
 \]

 Prove that there exists no retraction of the Möbius band to its boundary.

3. Consider the space \(X \) obtained from an octagon by identifying its sides as shown in the figure:

 \[
 \begin{array}{c}
 a \\
 b \\
 a \\
 \text{x_0} \\
 d \\
 c \\
 d \\
 \end{array}
 \]

 The dashed path in the figure determines a loop in \(X \) based at \(x_0 \), and hence an element of \(\pi_1(\mathbb{X}, x_0) \). Is that element equal to the identity?