1. Describe deck transformations of the covering $\mathbb{C} \setminus \{-1\} \to \mathbb{C} \setminus \{-1\}$ given by $z \mapsto z^2 + 2z$.

2. Consider the subspace $X \subset \mathbb{R}^2$ given by $X = \{y = 0\} \cup \{x \in \mathbb{Z}\}$. Define a \mathbb{Z}-action on X by $(x, y) \mapsto (x + m, y)$, where $m \in \mathbb{Z}$.

 (a) Describe the quotient space X/\mathbb{Z}.
 (b) Prove that the quotient map $X \to X/\mathbb{Z}$ is a universal covering.
 (c) Compute the fundamental group of X/\mathbb{Z}.

3. Consider the space X obtained from a hexagon by identifying its sides as shown in the figure:

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- (-1,1) -- (-1,0) -- cycle;
\draw (0,0) -- (0,1) node[midway, above] {a};
\draw (1,0) -- (1,1) node[midway, right] {b};
\draw (0,1) -- (1,1) node[midway, right] {c};
\draw (-1,1) -- (-1,0) node[midway, below] {a};
\draw (-1,0) -- (-1,1) node[midway, below] {b};
\draw (-1,1) -- (0,1) node[midway, above] {c};
\end{tikzpicture}
\end{center}

Compute the simplicial homology of X with coefficients in \mathbb{Z}.