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Abstract

Symplectic and Poisson structures are the basis for interpreting PDEs such as KdV, NLS,
Sine-Gordon, etc. as infinite dimensional Hamiltonian systems. This talk is a description of the
symplectic structure for the NLS using sources [1] [2] [3]. I discuss the underlying Lie Group
and Lie sub-Algebra to define the phase space of a symplectic manifold. Then point out how
the symplectic manifold inherits structure from the Lie sub-algebra to turn it into pre-Hilbert
space. Then I define a symplectic form to derive the complete symplectic structure. Finally,
an example is shown on how to derive the symplectic gradient of a function on the phase space
to derive the NLS. The NLS is expressed as a Hamiltonian flow of the form u̇ = (∇sH)u for
u in the phase space and H, a function on the phase space.
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