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1 Abstract

One way of computing the Euler characteristic of a compact 2 dimensional
manifold M is with the formula

χ(M) = V − E + F

where V , E, and F , are the number of vertices, edges, and faces respectively in
any triangulation of M . If one selects a triangulation via some random process,
V , E, and F become random variables. By linearity of expectation, and since
the Euler characteristic does not depend on the choice of triangulation, we
obtain:

χ(M) = E[V ] − E[E] + E[F ]

If M is has a Riemannian metric, one can define a sequence of random triangu-
lations for which, in the limit, this equation becomes exactly the Gauss Bonnet
theorem (without boundary):

χ(M) =

∫
M

k dA.

This non-standard approach to proving Gauss Bonnet is due to Leibon [1].
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