Random Triangulations of a Riemannian Manifold

Thomas Doehrman

4pm 5/4

1 Abstract

One way of computing the Euler characteristic of a compact 2 dimensional manifold M is with the formula

$$
\chi(M)=V-E+F
$$

where V, E, and F, are the number of vertices, edges, and faces respectively in any triangulation of M. If one selects a triangulation via some random process, V, E, and F become random variables. By linearity of expectation, and since the Euler characteristic does not depend on the choice of triangulation, we obtain:

$$
\chi(M)=\mathbb{E}[V]-\mathbb{E}[E]+\mathbb{E}[F]
$$

If M is has a Riemannian metric, one can define a sequence of random triangulations for which, in the limit, this equation becomes exactly the Gauss Bonnet theorem (without boundary):

$$
\chi(M)=\int_{M} k d A
$$

This non-standard approach to proving Gauss Bonnet is due to Leibon [1].

References

[1] Gregory Leibon. "Random Delaunay triangulations and metric uniformization". In: International Mathematics Research Notices (Dec. 2000). Doi: 10.1155/S1073792802201166.

