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Lecture 1: Introduction to planar billiards

Let D ⊂ R2 be a compact planar domain bounded by a smooth curve ∂D. The dynamics of a billiard
ball (which we assume to be a point mass) in D is defined as follows: the ball is moving inside D along
a straight line with constant velocity, until it hits the boundary. Upon hitting the boundary, the ball is
reflected from it according to the law the angle of reflection is equal to the angle of incidence, after which
it continues moving along a straight line with constant velocity until it hits the boundary again. Then it
is again reflected according to the same law, and so on. See Figure 1.

We would like to understand the dynamics of the ball, i.e. find, if possible, its position and velocity
as a function of time, as well of the initial position and velocity. To begin with, we need to describe the
phase space of the ball, that is the space of all its possible positions and velocities. There are two possible
approaches to defining this space for the billiard system. The first one is to consider all possible positions,
including those strictly inside the domain D. However, in this approach, the dynamics is trivial on most
of the phase space, because when the ball is strictly inside D, it is just moving along a straight line. The
second approach is to only look at the positions of the ball at the boundary ∂D. Knowing the current
position of the ball at the boundary, and also its current velocity, we can easily recover the subsequent
dynamics of the ball, at least until it hits the boundary next time. So, we can only trace subsequent
positions of the ball at the boundary, while all other positions are easily recovered. Also notice that since
the magnitude of the velocity vector is preserved and does not affect the dynamics at all, we can assume
that the velocity is given by a unit vector. Finally, notice that there is two kind of possible velocity vectors
of the ball at the boundary: outward velocities, and inward velocities. Outward velocity means that the
ball has just hit the boundary, and has not yet been reflected, while inward velocities are velocities after
reflection.

Remark 1.1. Let γ(t) be a parametrization of ∂D, corresponding to its counter-clockwise orientation.
We say that a vector v at x = γ(t0) is inward if the orientation of the frame (γ′(t0), v) is positive, and
outward if the orientation of the frame (γ′(t0), v) is negative, see Figure 2. Also note that a velocity vector
which is neither inward, nor outward, must be tangent to the boundary. Such velocities are only possible
for billiards in non-convex domains, see Figure 3.

Since inward velocities and outward velocities are connected by the reflection law, it suffices to consider
just one type of velocity vectors, for example the inward ones. So, we define the phase space of a billiard
ball in D as the space of inward unit vectors attached at points of ∂D. In other words, an element of the
phase space is a pair (x, v), where x ∈ ∂D, and v ∈ TxD is an inward tangent vector. Note that since
∂D is homeomorphic to a circle, while an inward tangent vector v is characterized by the angle α ∈ (0, π)
it makes with the positive direction of ∂D (see Figure 4), our phase space can be viewed as the cylinder
S1 × (0, π). As coordinates on this cylinder, we can take the angle α ∈ (0, π), as well as any coordinate
on S1 = ∂D. In what follows, as coordinate on ∂D we will use the arc-length parameter t. So, the phase

∂D

D

Figure 1: Trajectory of a billiard ball in a planar domain D.
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Figure 2: v is an inward velocity vector, and w is an outward velocity vector.

D

Figure 3: In a non-convex domain D, the velocity of a billiard ball may be tangent to the boundary.

space of the billiard in D is a cylinder with coordinates (t, α), where t is a real number defined up to an
integer multiple of the total length L of ∂D, and α ∈ (0, π).

Let M be the phase cylinder of the billiard in D. Define the billiard map T : M → M as follows:
for an outward velocity vector v at a boundary point x ∈ ∂D, its image under T is the velocity of the
billiard ball with initial velocity v immediately after it is reflected from the boundary for the first time,
see Figure 5. Then the iterate T k computes the velocity of the ball after it hits the boundary for the k’th
time (see Figure 6). So, the dynamics of the billiard ball is pretty much determined by the behavior of
the billiard map T : M → M and its iterates. For this reason, most (if not all) people studying billiards
study properties of this map.

The first thing we would like to understand about this map T is how regular it is. This very much
depends on the properties of the domain D and its boundary ∂D. In particular, if D is not convex, then
T does not even have to be continuous. For example, in Figure 7, initially close vectors v and w are
mapped by T to vectors that are far away from each other.

For convex domains with smooth boundary, a routine application of the implicit mapping theorem
show that T is continuous, and, moreover, a diffeomorphism of the open phase cylinder M = ∂D× (0, π)

∂D

x
v
α D

Figure 4: An element of the phase space for the billiard in D is a point x ∈ D and an inward tangent
vector at v ∈ TxD. The latter vector can be characterized by the angle α ∈ (0, π) it makes with the
positive direction of ∂D.
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Figure 5: Definition of the billiard map T .

∂D

D
v

T 2(v)

Figure 6: Itertaions of the billiard map T .

to itself. If, moreover, the boundary of D has strictly positive curvature, then we have the following
result:

Theorem 1.2 (see e.g. [9]). If the boundary of the domain D is smooth and has strictly positive curvature,
then the corresponding billiard map T : M →M extends to a diffeomorphism of the closed phase cylinder
∂D × [0, π] to itself.

In other words, for sufficiently nice boundaries, the billiard map stays well-defined and smooth when
the initial velocity vector tends to a vector parallel to the boundary.

Lecture 2: Invariant area form of the billiard map and Poincaré’s re-
currence theorem

Recall that the phase space M of a billiard in a domain D is the space of pairs (x, v), where x ∈ ∂D
is a point at the boundary of D, and v ∈ TxD is an inward unit tangent vector at x. Since ∂D is
homeomorphic to a circle, and the space of unit inward tangent vectors at each point is homeomorphic
to an open interval, the phase space M is topologically a cylinder. As coordinates on M , we take the arc

v

T (v) wT (w)

Figure 7: In a non-convex domain, the billiard map may be discontinuous.
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γ(t)α

γ(t′)
α′

Figure 8: The partial derivatives of the function ||γ(t′)− γ(t)|| are given by cos(α′) and cos(α).

length parameter t on ∂D, and the angle α which the inward vector v makes with the positive direction
of ∂D. Note that the coordinate t is defined modulo the total length L of ∂D, while α is well-defined real
number in (0, π). Consider the following 2-form on M :

ω = sin(α)dα ∧ dt.

Note that even though t is not quite a function (it is defined up to an additive constant L, so it is in
a fact a map to a circle), its differential dt is a well-defined 1-form. So, the 2-form ω is well-defined as
well. Furthermore, we have dα∧dt 6= 0, because α and t are, by construction, coordinates on M . Finally,
notice that sin(α) 6= 0, since α ∈ (0, π). So, ω is a non-vanishing 2-form on a 2-manifold M , i.e. it is
an area form (a particular case of a volume form, that is a non-vanishing n-form on an n-dimensional
manifold).

Theorem 2.1. The area form ω on M is preserved by the billiard map T : T ∗ω = ω. In other words, for
any domain U ⊂M , we have ∫

U
ω =

∫
T (U)

ω,

provided that at least one of these integrals is well-defined.

The proof is based on the following lemma:

Lemma 2.2. Let γ be an arc length parametrized curve in R2. Let also ||γ(t′) − γ(t)|| be the Euclidian
distance between the points γ(t) and γ(t′). Finally, let α and α′ be the angles between the chord joining
γ(t) and γ(t′) and the arc of γ connecting those two points (see Figure 8). Then

∂

∂t
||γ(t′)− γ(t)|| = − cos(α),

∂

∂t′
||γ(t′)− γ(t)|| = cos(α′). (1)

Proof of the lemma. The expression ||γ(t′) − γ(t)|| is a symmetric function in t and t′, so its partial
derivatives with respect to these variables should be the same, up to replacing t with t′. The reason for
different signs of the partial derivatives in (1) is the asymmetric definition of the angles α and α′: α is the
angle between the chord γ(t)γ(t′) and the positive direction of γ, while α′ is the angle between the same
chord and the negative direction of γ (see Figure 8). So, it suffices to establish the second of formulas (1).
The first one then follows by symmetry.

To prove second of formulas (1), fix t and consider the function g(x) = ||x−γ(t)||, where x ∈ R2. The
level set of this function through the point γ(t′) is a circle centered at γ(t). Therefore, the gradient of
g(x) at γ(t′) is orthogonal to that circle and hence collinear to the vector γ(t′)− γ(t), see Figure 9 (this
can also be seen from the definition of the gradient as the direction of fastest increase). Furthermore, the
derivative of the function g(x) = ||x− γ(t)|| at x = γ(t′) in the direction1 γ(t′)− γ(t) is clearly equal to

1Here we distinguish between the derivative in the direction v, and the derivative along v. By definition, the derivative
in the direction v is the derivative along v/||v||.
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1, so the gradient of g(x) at γ(t′) is a unit vector positively collinear to γ(t′)− γ(t) (here we use that the
magnitude of the gradient is equal to the derivative of the function in the direction of the gradient, and
also that a function must increase, not decrease in the direction of its gradient).

Now we have that ||γ(t′)− γ(t)|| = g(γ(t′)), so the partial derivative of ||γ(t′)− γ(t)|| with respect to
t′ is equal to the derivative of the function g(x) along the velocity vector γ′(t′) of the curve γ at the point
γ(t′). Therefore, we have

∂

∂t′
||γ(t′)− γ(t)|| = 〈grad g(γ(t′)), γ′(t′)〉,

where grad g(γ(t′)) is the gradient of g(x) at x = γ(t′). Furthermore, we already saw that grad g(γ(t′)) is
a unit vector, while γ′(t′) is a unit vector because the curve γ is arc length parametrized. So, the inner
product between these two vectors is equal to the cosine of the angle between them. To complete the
proof, it suffices to notice that this angle is precisely α′ (see Figure 9).

Proof of Theorem 2.1. Let (t′, α′) be the coordinates of the image of the point (t, α) under the billiard
map T . Then t′, α′ are smooth functions of t, α, and hence smooth functions on M . Let also γ be the
arc length parametrized boundary of the billiard table D. Then α′ can be defined as the angle between
the chord γ(t)γ(t′) and the negative direction of the curve γ, see Figure 10. Now, consider the function
f = ||γ(t′) − γ(t)||. Since t and t′ are smooth functions on M , so is f . Furthermore, by Lemma 2.2, we
have

df = cos(α′)dt′ − cos(α)dt. (2)

Consider now the 1-form ξ on M given by

ξ = − cos(α)dt.

Notice that
dξ = d(− cos(α)) ∧ dt = sin(α)dα ∧ dt = ω.

Furthermore, by (2) we have

df = ξ − T ∗ξ. (3)

Any f satisfying this equation for some ξ such that dξ = ω is called a generating function of the map T .
A map possessing a generating function is automatically area-preserving. Indeed, taking the differential
of both sides in (3), we get

0 = dξ − dT ∗ξ = dξ − T ∗dξ = ω − T ∗ω,
so

T ∗ω = ω,

as desired. Thus, the billiard map T has a generating function given by ||γ(t′) − γ(t)|| and hence is
area-preserving, q.e.d.

γ(t)

γ(t′)

α′

α′
grad g(x)

γ′(t′)

Figure 9: The gradient of the function g(x) = ||x− γ(t)|| at the point x = γ(t′).
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γ α γ(t)

α′

α′

γ(t′) D

Figure 10: The billiard map T takes the point (t, α) to the point (t′, α′).

Theorem 2.3 (Poincaré’s recurrence theorem for billiards). The billiard map T : M →M has the follow-
ing recurrence property: for any open subset U ⊂M , almost all points in U will eventually return, under
the action of iterations of T , to the set U . In other words, for almost any v ∈ U there exists a natural
number n > 0 such that Tn(v) ∈ U .

Remark 2.4. As one can see from the proof, this theorem is true for any volume-preserving map of an
n-dimensional manifold, provided that the total volume of the manifold is finite. Furthermore, the same
result holds for any measure-preserving map of any measure space, again provided that the measure of
the whole space is finite. This is the way this theorem is usually stated.

Proof of Theorem 2.3. Let V ⊂ U be the set of points which do not return to U under the iterations of
T . This means that V consists of points v ∈ U such that Tn(v) /∈ U for any natural number n > 0. We
need to show that the set V has area 0. To that end, notice that for any natural n > 0, the set Tn(V ) is
disjoint from V . Indeed, by definition of V , the set Tn(V ) does not intersect U and hence V . So, we have
that Tn(V ) ∩ V is an empty set. Furthermore, since T is invertible, it follows that for any integer l ≥ 0
the set Tn+l(V )∩T l(V ) is also empty (if v ∈ Tn+l(V )∩T l(V ), then it must be that T−l(v) ∈ Tn(V )∩V ,
which is impossible). And since n > 0 and l ≥ 0 are arbitrary, it follows that the sets

V, T (V ), T 2(V ), . . . (4)

are all pairwise disjoint. So, their total area cannot exceed the total area of the phase cylinder M , which
is ∫ L

0

∫ π

0
sin(α)dαdt = 2L,

i.e. twice the perimeter of the billiard table. At the same time, since T is area-preserving, all the sets (4)
have the same area and thus may have finite total area only if each of them has area zero. Thus, the
theorem is proved.

Remark 2.5. There is one step that we skipped in the proof: one actually needs to explain why the set
V has well-defined area at all. This can be done by showing that V is a difference of two open sets and
hence measurable.

Example 2.6. Consider a billiard table D of an arbitrary shape, and let I ⊂ ∂D be a (possibly very
small) open subset of the boundary. Consider billiard trajectories that start at points of I and make an
angle with ∂D which is between 89◦ and 91◦. Then, according to Poincaré’s theorem (applied to the
subset U = I× (89◦, 91◦) ⊂M), almost all of these trajectories will eventually hit I again, and, moreover,
the angle of incidence will again be between 89◦ and 91◦. Of course, it may (and, generally speaking, will)
take a long long time for this event to occur: Poincaré’s recurrence theorem is saying that for almost all

8



initial data v in our open subset U , there is n > 0 such that Tn(v) ∈ U , but it is saying nothing about
what the value of n is.

Lecture 3: Billiards in disks

We now turn to studying concrete examples of billiards. We will start with the simplest case of billiards
in disks. Clearly, it is sufficient to consider the case when D is a unit disk: billiards in disks of different
radii behave in the same way. Let A be a point in the unit circle. Consider the billiard trajectory in the
unit disk which starts at A and makes an angle α with the positively oriented unit circle (see Figure 11).
Then this trajectory will meet the unit circle again at a point B, and the angle of incidence is also equal
to α (because a chord intersects a circle at the same angle at both intersection points). Therefore, after
the trajectory is reflected at B, it will again make an angle α with the positive direction of the unit circle.
This means that billiard map T does not affect the α-coordinate on the phase cylinder M at all: α′ = α.
Further, denote the t-coordinate of A by t, and the t-coordinate of B by t′. Then the increment t′ − t is
equal to the measure of the arc of the circle that goes from A to B (in the counter-clockwise direction).
This measure is equal to the angle ∠AOB (where O is the center of the circle), which, in turn, is equal to
2α (by the tangent-chord theorem combined with the inscribed angle theorem). Therefore, in coordinates,
the billiard map T in the unit disk is given by{

t′ = t+ 2α,

α′ = α,

where addition in the formula for t′ is understood modulo the total length of the unit circle, which is 2π.
This is a linear map (at least if we forget about the periodicity of the t-coordinate), and the corresponding
dynamics (i.e. the behavior of iterates of this map) is easy to understand. Namely, we have the following
explicit formulas for the iterate Tn: {

t′ = t+ 2nα,

α′ = α,

where, again, addition in the formula for t′ is understood modulo 2π. We, however, would like to under-
stand what the dynamics looks like qualitatively. To that end, notice that since α is preserved by the
map, we can just fix it and study the dynamics, of the t variable, which is given by

t 7→ t+ 2α. (5)

α A

α

α
B

O

2α

Figure 11: Billiard in a disk.
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Figure 12: Periodic billiard trajectories in a disk.

Recall that t can be thought of a as a point in a circle, t ∈ R/2πZ. The map (5) is then a rotation of that
circle by angle 2α. This rotation behaves differently depending on whether the number α/π is rational
or irrational. If α/π = m/n is rational, then 2nα = 2mπ, and thus the n’th power of the map (5) is the
identity map. So, for α/π ∈ Q, the map (5) is periodic. In terms of the billiard, this means that any
trajectory with such α eventually closes up. Figure 12 shows two 5-periodic trajectories corresponding to
α = π/5 and α = 2π/5.

Now, consider the case α/π /∈ Q. In this case, we can still approximate α/π with a rational, with
arbitrary precision (the denominator of that rational may be large, though). So, even though the dynamics
in this case is not periodic, it is close to periodic. Such dynamics is known as almost periodic or quasi-
periodic (the periodic case can also be considered a particular case of the quasi-periodic one). Note that
in this case t+ 2nα 6= t+ 2mα modulo 2π unless m = n, which means that the orbit of any t ∈ S1 under
iterations of the map (5) is infinite. One can in fact quite easily show that any orbit is dense in the circle.
Figure 13 shows what a piece of a non-periodic billiard trajectory in a disk, corresponding to α/π /∈ Q,
looks like. We in fact generated this as a periodic trajectory with large period. In practice, one does not
really see the difference between quasiperiodic dynamics and periodic dynamics with large period.

We conclude this discussion by noticing that Poincaré recurrence clearly holds for the billiard in a disk
(as it should by Theorem 2.3). Moreover, since the dynamics is quasi-periodic, every point eventually
returns to any its small neighborhood.

Lecture 4: Billiards in ellipses

We now turn our attention to billiards in ellipses. Most of the results we will obtain also apply to
hyperbolas. The case of a hyperbola is, however, somewhat more sophisticated, because, in contrast to
ellipses, hyperbolas do not bound compact domains. So we will stick with ellipses. That being said,

Figure 13: A non-periodic billiard trajectory in a disk.
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hyperbolas will still be appearing from time to time in our study.
Consider an ellipse given in a Cartesian coordinate system (x1, x2) by

x21
a21

+
x22
a22

= 1.

As known from linear algebra, any ellipse can be written in this form in a suitable orthogonal coordinate
system.

Given a point (x, v) in the phase cylinder M for the billiard in the ellipse, consider the function

J = −
(
x1v1
a21

+
x2v2
a22

)
, (6)

where (x1, x2) are components of x, and (v1, v2) are components of v.

Proposition 4.1. The function J is invariant under the billiard map T : M → M , i.e. J(T (x, v)) =
J(x, v).

Remark 4.2. A function invariant under a map is called a conserved quantity, a first integral, or just
an integral of the map. This particular function J is known as the Joachimsthal integral. Note that this
integral can also be rewritten as

J = −1

2
〈v, grad f(x)〉,

where

f =
x21
a21

+
x22
a22

is the defining function of the ellipse. This explains the negative sign in the definition: since grad f(x) is
an outward normal to the ellipse, and v is an inward vector, the angle between grad f(x) and v must be
obtuse, and 〈v, grad f(x)〉 < 0. Therefore, our function J is always positive. Of course, the function

−J =
x1v1
a21

+
x2v2
a22

is also preserved by the billiard map, it is just somewhat more pleasant to work with positive functions
than with negative ones.

Remark 4.3. Also notice that in the case of a unit circle the norm of the vector grad f(x) is equal to 2,
so

J = −1

2
〈v, grad f(x)〉 = − cos(α+ π/2) = sin(α),

where we also used that v is a unit vector, and that its angle with the outward normal grad f(x) is equal
to α+π/2, with α being the angle between v and the positive direction of the unit circle. So, in the circle
case the conserved quantity J essentially coincides with the conserved quantity α which we found in the
previous lecture (more precicely, J = sin(α), but saying that α is preserved is more or less the same as
saying that sin(α) is preserved). So, we already know that Proposition 4.1 is true for the cirlce.

Proof of Proposition 4.1. Let (x, v) ∈ M be a point in the phase cylinder, and let (x′, v′) = T (x, v) be
its image under the billiard map. Then, by definition of the billiard map, the vectors v and v′ make the
same angle with the (tangent line to the) ellipse at x′. Since those are unit vectors, this is equivalent to
saying that the vector v + v′ is tangent to the ellipse at x′, see Figure 14. Using also that the gradient
grad f(x′) is orthogonal to the ellipse at x′, this gives

〈v + v′, grad f(x′)〉 = 0,

11



v
v′

x

x′ v

v + v′

Figure 14: To the proof of Proposition 4.1.

so

J(x′, v′) = −1

2
〈v′, grad f(x′)〉 =

1

2
〈v, grad f(x′)〉.

We need to show that this is equal to

J(x, v) = −1

2
〈v, grad f(x)〉,

which is equivalent to proving that

〈v, grad f(x) + grad f(x′)〉 = 0.

Also notice that v is collinear to x′ − x (by definition of the billiard map), so we need to show that

〈x− x′, grad f(x) + grad f(x′)〉 = 0. (7)

To show this, we will use that f is a homogeneous quadratic function. Write f in the form f = 〈x,Ax〉,
where

A =


1

a21
0

0
1

a22

 .

Notice that grad f(x) = 2Ax. So, the left hand side of (7) can be rewritten as

2〈x− x′, Ax+Ax′〉 = 2
(
〈x,Ax〉 − 〈x′, Ax′〉+ 〈x,Ax′〉 − 〈x′, Ax〉

)
.

But 〈x,Ax〉 = f(x) = 1, since x lies on the ellipse. Likewise, 〈x′, Ax′〉 = 1. Finally, notice that
〈x,Ax′〉 = 〈x′, Ax〉 since A is symmetric. So, we conclude that (7) indeed holds, as desired.

We now want to find a geometric interpretation of the Joachimsthal integral J . To that end, we will
need a more geometric definition of an ellipse:

Definition 4.4. Let f1, f2 be two points in the Euclidian plane R2, and let l > 0 be a positive real number.
Then the set of points {x ∈ R2 | |xf1| + |xf2| = l} is called an ellipse with foci f1, f2. Here |xfi| stands
for the Euclidian distance between x and fi. Similarly, the set of points {x ∈ R2 | ||xf1| − |xf2|| = l} is
called a hyperbola with foci f1, f2.

We now want to obtain an analytic description of ellipses and hyperbolas with given foci f1, f2. We
will assume that f1 = (−a, 0), f2 = (a, 0). By doing so we do not loose any generality because any pair
of points has such coordinates in a suitable orthogonal coordinate system.

12



Figure 15: The foci of a horizontal/vertical ellipse.

Proposition 4.5. The equation of an ellipse/hyperbola with foci f1 = (−a, 0), f2 = (a, 0) and given
parameter l > 0 is

x21
l2/4

+
x22

l2/4− a2
= 1. (8)

Remark 4.6. The reader may be confused by the fact that an ellipse and a hyperbola with the same
parameters are described by the same equation. But there is no contradiction here. The point is that by
the triangle inequality we must always have l > 2a for an ellipse and l < 2a for a hyperbola. So for any l
there may exist either an ellipse, or a hyperbola with such l, but not both at a time.

The proof of Proposition 4.5 is a straightforward algebraic verification of the equivalence between
equation (8) and Definition 4.4.

Lecture 5: Geometric meaning of the Joachimsthal integral

In this lecture we will reveal the geometric meaning of the Joachimsthal integral (6) for the billiard map
in an ellipse. Consider once again an ellipse given by

x21
a21

+
x22
a22

= 1. (9)

Without loss of generality, we may assume that this ellipse is “horizontal”, i.e. a1 ≥ a2 (this can be
always achieved by rotating the coordinate system if necessary). Furthermore, since we already studied
the circle case in detail, we will assume that our ellipse is not a circle, which means that a1 > a2.

Proposition 5.1. The foci of the ellipse (9) are the points (±a, 0), where a =
√
a21 − a22.

Remark 5.2. We assumed that a1 ≥ a2 to have foci on the horizontal axis. For a1 ≤ a2, the foci are on
the vertical axis (see Figure 15).

Proof of Proposition 5.1. Equation (9) coincides with (8) if we set a =
√
a21 − a22 and L = 2a1.

It follows that the equations of conics (i.e. ellipses and hyperbolas) which are confocal with (i.e. have
the same foci as) our ellipse (9) is

x21
l2/4

+
x22

l2/4− a21 + a22
= 1.

This can be written in a more symmetric way if we define λ = l2/4−a21. Then the above equation becomes

x21
a21 − λ

+
x22

a22 − λ
= 1. (10)
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Figure 16: A confocal family. The solid dots are the foci.

This is a standard equation of a confocal family. For an arbitrary value of λ 6= a21, a
2
2, this equation defines

a conic, and all these conics have the same foci as the ellipse (9). And conversely, any conic confocal with
the ellipse (9) is contained in the family (10). Figure 16 shows an example of a confocal family.

We will now be interested in the following question: given a line in R2, how many, if any, conics from
the family (10) are tangent to that line? The following lemma says that there is almost always exactly
one, except for a couple of cases when there is none:

Lemma 5.3. Consider the line x+ tv through the point x = (x1, x2) with direction v = (v1, v2). Then

1. This line is tangent to at most one conic from the family (10).

2. If such a tangent conic exists, then its parameter λ which distinguishes it in the family (10) is given
by

λ =
a21v

2
2 + a22v

2
1 − (x1v2 − x2v1)2

v21 + v22
. (11)

3. Such tangent conic does not exist in the following two cases:

(a) The number λ given by formula (11) is equal to a21, in which case the line x+ tv coincides with
the minor axis of the ellipse (9).

(b) The number λ given by formula (11) is equal to a22, in which case the line x + tv is passing
through one of the foci of the ellipse (9).

Proof. The line x+ tv is tangent to the conic (10) when the equation

(x1 + tv1)
2

a21 − λ
+

(x2 + tv2)
2

a22 − λ
= 1

for their intersection points has exactly one solution in terms of t; that is, when its discriminant is equal
to 0. Equating the discriminant to 0 and solving for λ, we get formula (11). The expression on the
right-hand side of (11), however, may be equal to a21 or a22, which does not correspond to any conic in
the family (10). In that case, there is no conic in the family (10) tangent to the line x+ tv. In all other
cases, such a conic exists, is unique, and corresponds to λ given by (11).

To complete the proof it now suffices to obtain a geometric interpretation of the cases λ = a21 and
λ = a22. First assume that λ = a21. Then (11) gives

(a21 − a22)v21 = −(x1v2 − x2v1)2.
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Notice the left-hand side of this equation is non-negative (since a1 > a2 > 0), while the right-hand side is
non-positive. Therefore, this equation holds if and only if both sides are equal to 0, which is equivalent
to v1 = 0 and x1 = 0. But these two conditions together hold precisely when the line x + tv coincides
with the vertical coordinate axis or, which is the same, with the minor axis of the ellipse (9).

Similarly, if λ = a22, then
(a22 − a21)v22 = −(x1v2 − x2v1)2,

which is equivalent to
x1v2 − x2v1 = ±av2,

with a =
√
a21 − a22. The geometric meaning of this equation is that the vectors (x1, x2) − (±a, 0) and

(v1, v2) are collinear, which is the same as to say that the line x + tv is passing through the one of the
points (a, 0), (−a, 0). But those points are precisely the foci of the ellipse (9), hence the result.

We now show that Joachimsthal integral computed at a point (x, v) of the phase cylinder for the
billiard in an ellipse is closely related to the parameter λ of the confocal conic to which the line x+ tv is
tangent:

Proposition 5.4. The quantity λ given by formula (11), regarded as a function on the phase cylinder M
of the billiard in the ellipse (9), is related to the Joachimsthal integral J by the formula

λ = a21a
2
2J

2. (12)

Proof. For a unit vector v, formula (11) becomes

λ = a21v
2
2 + a22v

2
1 − (x1v2 − x2v1)2 = (a21 − x21)v22 + (a22 − x22)v21 + 2x1x2v1v2. (13)

Furthermore, since the point (x1, x2) lies on the ellipse (9), we have

x21
a21

+
x22
a22

= 1 ⇒ x21 − a21
a21

+
x22
a22

= 0 ⇒ a21 − x21 =
a21x

2
2

a22
.

Similarly, we have

a22 − x22 =
a22x

2
1

a21
,

so (13) can be written as

λ =
a21x

2
2

a22
+
a22x

2
1

a21
+ 2x1x2v1v2 = a21a

2
2

(
x1v1
a21

+
x2v2
a22

)2

= a21a
2
2J

2,

as desired.

Corollary 5.5. 1. Assume that a segment of a billiard trajectory in the ellipse (9) is tangent to some
confocal conic (10). Then all segments of that trajectory are tangent to that conic.

2. Assume that a segment of a billiard trajectory in the ellipse (9) belongs to the minor axis. Then all
segments belong to the minor axis.

3. Assume that a segment of a billiard trajectory in the ellipse (9) is passing through one of the foci.
Then all segments are passing through one of the foci.

Proof. From (12) and preservation of J it follows that the function λ given by (11) is preserved by
the billiard map. The above three statements are the particular cases of this result corresponding to,
respectively, generic values of λ, λ = a21, and λ = a22.
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Figure 17: A billiard trajectory along the minor axis of an ellipse.

Remark 5.6. In view of Proposition 5.4, Corollary 5.5 is equivalent to preservation of the Joachimsthal
integral and thus can be viewed as a geometric form of the latter. Furthermore, all statements of Corol-
lary 5.5 can be obtained geometrically. The second statement is particularly straightforward: since the
minor axis is orthogonal to the ellipse, a billiard ball moving along that axis will continue doing so after
any number of reflections (see Figure 17). Of course, the same is true for the major axis, but the major
axis is not distinguished by any specific value of λ: its λ is the same as for any other line passing through
one of the foci.

Also note that the third statement of the corollary can be strengthened as follows: if a segment of
a billiard trajectory in the ellipse is passing through one of the foci, then the next segment must pass
through the other focus. Indeed, a generic billiard trajectory through one of the foci is not orthogonal
to the ellipse (see Figure 18) and hence cannot be reflected to the same focus. So, almost all trajectories
through one of the foci get reflected to the other focus, and by continuity it must be true for all such
trajectories.

The fact that a billiard trajectory through one of the foci is reflected to the other focus is known as
the optical property of the ellipse. It can be reformulated by saying that all light rays starting at one of
the foci get reflected, by an elliptic mirror, to the other focus. The optical property can be proved quite
easily without using the Joachimsthal integral, see e.g. [18, Lemma 4.2]. See also [18, Theorem 4.4] for
an independent geometric proof of the first result of Corollary 5.5.

Lecture 6: The phase portrait of the billiard in an ellipse

The phase cylinder M of the billiard in an ellipse

x21
a21

+
x22
a22

= 1. (14)

is foliated into level sets of the Joachimsthal integral

J = −
(
x1v1
a21

+
x2v2
a22

)
. (15)

Each of these level sets is preserved by the billiard map T . Furthermore, according to the previous lecture
each of these level sets can be seen as the set of velocity vectors (x, v) ∈ M corresponding to billiard

Figure 18: A segment of a billiard trajectory through a focus of an ellipse.
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trajectories tangent to one and the same conic confocal with the ellipse (14). This confocal conic is
explicitly given by

x21
a21 − λ

+
x22

a22 − λ
= 1, (16)

where the constant λ is related to the value of the Joachimsthal integral by the formula

λ = a21a
2
2J

2. (17)

We would now like to understand the structure of level sets of the function J . To that end, we rewrite
this function in terms of coordinates on M . As one of the coordinates, we take the angle α (the angle
between the velocity vector v and the positively oriented ellipse), and as a second coordinate we take the
parameter t on the ellipse (14) corresponding to the parametrization

x1 = a1 cos(t), x2 = a2 sin(t).

Remark 6.1. Note that this is not an arc length parameter, and in fact one cannot write the arc length
parametrization of an ellipse in terms of elementary functions.

Now, as in Lecture 4, we rewrite (15) as

J = −1

2
〈v, grad f(x)〉, (18)

where

f(x) =
x21
a21

+
x22
a22
.

Further, since v is a unit vector, and grad f(x) is an outward normal to the ellipse, (18) can be rewritten
as

J = −1

2
||grad f(x)|| cos(α+ π/2) =

1

2
||grad f(x)|| sinα = ||grad (f(x)/2)|| sinα =

√
x21
a41

+
x22
a42

sinα,

so in (t, α) coordinates we have

J =

√
cos2 t

a21
+

sin2 t

a22
sinα.

The level sets of this function are shown in Figure 19. This picture should be thought of as living on a
cylinder, which is obtained by identifying the opposite sides t = 0 and t = 2π of the colored rectangle. The
solid dots are located at critical points (0, π/2), (π/2, π/2), (π, π/2), (3π/2, π/2) of the function J . They
correspond to (initial velocity vectors of) billiard trajectories aligned with one of the axes of the ellipse.
The colors are used to show two regions with qualitatively different behavior of billiard trajectories, as
explained below.

Consider first the blue region. On the exterior boundaries of this region (given by α = 0 and α = π) we
have J = 0, while the value of J on the interior boundary is equal to that at the point (0, π/2) and hence
is 1/a1. Therefore, by formula (17), we have λ = 0 at the exterior boundary and λ = a22 at the interior
boundary. And since there is no critical points in the interior of the region, in that interior we must have
0 < λ < a22. But then it follows from equation (16) that confocal conics tangent to billiard rays with initial
conditions in the (interior of the) blue region are ellipses. Another important feature of the blue domain is
that even though each level set of J in that domain consists of two connected components (corresponding
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Figure 19: The phase portrait of the billiard in an ellipse.

to α < π/2 and α > π/2), the billiard map preserves each of those components individually. Indeed, if
we take an initial velocity vector v with angle α close to 0, then its image under the billiard map will
also have α close to 0. Therefore, components of level sets of J close to the lower boundary α = 0 cannot
be mapped to components close to the upper boundary α = π. But then it follows by continuity that
all components in the α < π/2 region are mapped to themselves, and the same is true for the α > π/2
region.

As for the green region, a similar analysis shows that it corresponds to trajectories tangent to confocal
hyperbolas (except for the critical points (π/2, π/2), (3π/2, π/2) whose corresponding trajectories are
aligned with the minor axis and hence are not tangent to any confocal conic). Another difference with
the blue region is that for the green one two connected components of each J-level are interchanged by
the billiard map. Indeed, this is obviously true for the critical points (π/2, π/2), (3π/2, π/2) and thus is
true for all components by continuity.

The curves separating the regions of different color are separatrices. Since at those curves we have
λ = a22, they correspond to billiard trajectories through the foci of the ellipse. Consider, for example, the
upper-left separatrix. On this separatrix we have t < π and α > π/2, which means that the corresponding
velocity vectors v are attached at the upper half of the ellipse and make an obtuse angle with its positive
direction. From this it is easy to see that such vectors give rise to billiard trajectories whose initial
segments pass through the right focus. Similarly, the lower-right separatrix also corresponds to the right
focus, while the lower-left and the upper-right ones correspond to the right focus.

Lecture 7: Liouville integrable maps in 2D

The billiard map for an ellipse preserves an area form and a function. In this lecture, we will discuss this
situation in an abstract setting:

18



Definition 7.1. Let M be a 2-dimensional manifold, and let T : M → M be an area-preserving diffeo-
morphism2 (i.e. there is an area form ω on M such that T ∗ω = ω). Assume also that T has a first
integral (i.e. a smooth function f : M → R such that T ∗f = f) whose differential does not vanish almost
everywhere on M . Then the map T is called Liouville integrable, completely integrable, or just integrable.

Here “almost everywhere” means “on an open dense subset”. Note that the set where df 6= 0 is
automatically open, so what is really required is that this set is dense. This is equivalent to saying that
there exist no open subset U ⊂ M such that the restriction of f to U is constant. In particular, this
prohibits the situation when f is a constant function. Constant functions are first integrals for any map,
so there is absolutely no reason to call the above map T integrable if it possesses a constant first integral.

One of the main general results on integrable systems is that integrability implies quasi-periodic dy-
namics. More precisely, under some natural assumptions, integrability implies quasi-periodic dynamics
on regular level sets of f . A level set of a smooth function f : M → R is called regular if it contains no
critical points of f , i.e. zeros of df . Our assumption that df 6= 0 almost everywhere, combined with Sard’s
lemma, implies that the union of regular level sets is dense in M . So, integrability guarantees that the
dynamic is relatively simple everywhere except possibly a nowhere dense set.

Theorem 7.2 (Arnold-Liouville theorem for maps in 2D). Let M be a 2-dimensional manifold, and let
T : M → M be an integrable area-preserving diffeomorphism with first integral f : M → R. For a ∈ R,
let Ma = f−1(a) be the corresponding level set of f . Assume that Ma is regular, compact, and connected.
Then Ma is diffeomorphic to a circle, and the dynamics of T restricted to Ma is quasiperiodic. In other
words, there is a periodic coordinate φ : Ma → R/2πZ such that in terms of φ the map T |Ma is a translation
φ 7→ φ+ c.

Remark 7.3. The standard version of the Arnold-Liouville theorem is for differential equations (vector
fields) instead of maps. We will discuss that version later on in the course. The version for maps is due
to A. Veselov [20].

Remark 7.4. The fact that Ma is a circle is trivial, since any compact connected 1-dimensional manifold
is (diffeomorphic to) a circle. The reason we emphasize this statement is to make connections with the
multidimensional version of this theorem where a circle is replaced by a torus. In that multidimensional
setting, the statement becomes not trivial at all: tori are very far from being the only compact connected
manifolds in any dimension d > 1.

Remark 7.5. Instead of requiring that Ma is connected, we can assume that T preserves the given
connected component M0

a of Ma. Then the conclusion of the theorem stays the same, with Ma replaced
by M0

a . Furthermore, even if M0
a is not preserved by T , there still exists k > 1 such that M0

a is preserved
by T k (because Ma is compact and thus has only finitely many connected components). So, we can always
apply the theorem for some iteration of T .

Also note that the compactness assumption is not really essential in our 2D case either, but it does
become important in the multidimensional setting. Furthermore, it simplifies things even in 2D, so we
include it.

To prove Theorem 7.2, we introduce the notion of a Hamiltonian vector field (which is also very
important on its own right). Let M be a 2D manifold equipped with an area form ω. Then, for any
x ∈ M , ω is a non-degenerate skew-symmetric bilinear form on TxM and thus can be viewed as an
invertible linear map ω : TxM → T ∗xM . Therefore, there is a well-defined linear map ω−1 : T ∗xM → TxM .

2If M is compact, then any area-preserving smooth map of M to itself is automatically a diffeomorphism. This is, however,
not true in the non-compact case. For example, (x, y) 7→ (x + 1, y) is an area-preserving map of the right-half plane to itself
(with respect to the standard area form dx ∧ dy), but it is not surjective.
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Definition 7.6. Let M be a 2-dimensional manifold M equipped with an area form ω. Let also f : M → R
be a smooth function. Then the associated Hamiltonian vector field Xf is defined by Xf = ω−1(df). The
function f itself is called the Hamiltonian corresponding to the field Xf .

Remark 7.7. A different notation for the Hamiltonian vector field associated with f is sgrad f , the skew
gradient of f . Its definition is indeed similar to that of a gradient, with the metric replaced by the area
form.

Example 7.8. Assume that ω = dx ∧ dy. Then the components of Xf are ∂f
∂y and −∂f

∂x .

Proposition 7.9. The derivative of f along the corresponding Hamiltonian vector field Xf is 0.

Proof. This derivative is equal to 〈df,Xf 〉, where 〈 , 〉 is the pairing between covectors and vectors. But

〈df,Xf 〉 = 〈ω(Xf ), Xf 〉 = ω(Xf , Xf ) = 0,

as desired.

Lecture 8: Proof of the Arnold-Liouville theorem in 2D and Poncelet’s
closure theorem

We are now in a position to prove Theorem 7.2. First note that the regular level set Ma = f−1(a) of f
is automatically a circle simply because it is a compact connected 1-dimension manifold. So it suffices to
construct a periodic coordinate φ : Ma → R/2πZ such that in terms of φ the map T |Ma is a translation
φ 7→ φ+ c. To that end, consider the Hamiltonian vector field Xf associated with f . By Proposition 7.9,
the vector field Xf is tangent to the circle Ma and, therefore, can be restricted to it. Also note that Xf

does not vanish in Ma since Xf = ω−1(df) vanishes only at those points where df = 0, and there is no
such points in Ma. So, Xf is a non-vanishing vector field on a circle. But then there must exist a periodic
coordinate ψ : Ma → R/LZ on Ma such that Xf |Ma = ∂/∂ψ. Locally the existence of such a coordinate
is a particular case of the general rectification theorem for vector fields, but in the case of the circle this is
also true globally, and can be shown as follows. Let s be any periodic coordinate on the circle Ma. Then
Xf , written in terms of s, reads v(s)∂/∂s. We want to find a new coordinate ψ such that

∂

∂ψ
= v(s)

∂

∂s
.

The latter expression can be rewritten as

v(s)
∂

∂s
= v(s)

dψ

ds

∂

∂ψ
,

so
∂

∂ψ
= v(s)

dψ

ds

∂

∂ψ
,

which means that ψ can be defined by

ψ =

∫
ds

v(s)
.

The latter expression has a simple physical meaning. Define the distance traveled as the net change in
the s coordinate. Then ds is an infinitesimal displacement, and ds/v(s) is the time it takes to travel the
infinitesimal distance ds with speed v(s). So, the above integral can be interpreted as the total time it
takes to get from a fixed point on the circle to a given one, when traveling with velocity prescribed by
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our vector field v(s)∂/∂s. It is not a surprise that ψ has a meaning of time: since we want the velocity
written in terms of the new coordinate to be equal to 1, the displacement and time should be the same.

The above formula for ψ also suggests a coordinate-free construction of that function. Notice that
the form α = ds/v(s) takes the value 1 on the vector Xf = v(s)∂/∂s. So, this form can be defined in a
coordinate-free fashion as the unique 1-form α such that at every point of Ma we have 〈α,Xf 〉 = 1. In
other words, at every point x ∈Ma, {α|x} is the basis of T ∗xMa dual to the basis {Xf |x} of TxMa. Then
the function ψ can be constructed as

ψ(x) :=

∫ x

x0

α,

where x0 ∈Ma is any fixed point. This integral is well-defined up to the integral of α over the whole circle,
so it is indeed a periodic coordinate (one also needs to check that dψ 6= 0, but this follows from dψ = α).
Furthermore, it is immediate from this construction that Xf = ∂/∂ψ, because 〈dψ,Xf 〉 = 〈α,Xf 〉 = 1.

We are now in the following situation. On the circle Ma, we have a constant vector field Xf = ∂/∂ψ.
This vector field is preserved by the map T , because T preserves both the Hamiltonian f and the area
form, and Xf is constructed out of these two ingredients. But the only maps that preserve a constant
(non-zero) vector field on a circle are translations. The easiest way to see that is once again consider the
1-form dψ dual to the vector-field Xf . Since Xf is preserved by T , so is dψ. But this means that

dT ∗ψ = T ∗dψ = dψ ⇔ d(T ∗ψ − ψ) = 0 ⇔ T ∗ψ = ψ + c,

where c is a constant. But this means that in terms of ψ the map T is ψ 7→ ψ + c. This is almost what
we need, the only problem is that ψ is L-periodic instead of 2π-periodic. This can be fixed by defining a
new coordinate φ = 2πψ/L. In terms of this new coordinate, the map T is still a translation, by 2πc/L.
Thus, the Arnold-Liouville theorem for maps in 2D is proved.

Corollary 8.1. Let M be a 2-dimensional manifold, and let T : M →M be an integrable area-preserving
diffeomorphism with first integral f : M → R. For a ∈ R, let Ma = f−1(a) be the corresponding level set
of f . Assume that Ma is regular, compact, and connected. Assume also that there is a natural number
k ≥ 1 and a point x ∈ Ma such that T k(x) = x. Then T k(y) = y for all points y ∈ Ma. In other words,
if T |Ma has a periodic point, then all points in Ma are periodic with the same period.

Proof. By the Arnold-Liouville theorem, there is a 2π-periodic coordinate φ on Ma such that, in terms
of this coordinate, the map T |Ma reads φ 7→ φ + c. Then the map T k|Ma reads φ 7→ φ + kc, and since
T k(x) = x, we must have that kc is an integer multiple of 2π. But this means that T k|Ma is the identity
map, as desired.

Remark 8.2. As can be seen from the proof of the Arnold-Liouville theorem, the coordinate φ in which
T |Ma is a rotation can be defined by an explicit formula involving integration. Furthermore, in terms of φ
the dynamics of T , i.e. its iterate Tn, takes the form φ 7→ φ+nc, where c can be computed as φ(T (x))−φ(x)
for any x ∈ Ma. So, to compute Tn(x), one needs to do the following. First, find the φ-coordinates of x
and T (x) by performing integration. Then compute c and hence the φ-coordinate of Tn(x). Finally, one
needs to invert the formula expressing φ, in order to find Tn(x) in original coordinates. So, an integrable
system can be explicitly “solved” in terms of integration and computing inverse functions. A possibility
to give a solution using just these operations is known as “solvability by quadratures”. Quadrature is
a historical term which means the process of determining area, i.e. integration. Thus, it follows from
(the proof of) the Arnold-Liouville theorem that integrable maps in 2D are solvable by quadratures. This
result is in fact usually included as one of the statements of the theorem.

From Corollary 8.1 applied to elliptic billiards, we get the following geometric result, known as Pon-
celet’s closure theorem:
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E2

E1

Figure 20: Poncelet triangles inscribed in E1 and circumscribed about E2.

Theorem 8.3. Let E1, E2 be two ellipses. Assume that E2 lies in the interior of the domain bounded by
E1. Assume also that there exists an n-gon inscribed in E1 and circumscribed about E2. Then there exists
infinitely many such n-gons, and every point on E1 is a vertex of such an n-gon (see Figure 20 illustrating
the case n = 3).

Proof. We will first prove the theorem under the assumption that E1 and E2 are confocal. In this case, an
n-gon inscribed in E1 and circumscribed about E2 is a closed billiard trajectory in E1. Indeed, any side of
such an n-gon ca be viewed as a segment of a billiard trajectory. It is tangent to E2, so by Corollary 5.5
all segments of the corresponding trajectory are tangent to E2. So both the given polygon and the billiard
trajectory are inscribed in E1 and circumscribed about E2, and since they have a common segment, they
must coincide.

Now, it suffices to prove that any other billiard trajectory in E1 which is tangent to E2 is closed with
the same period. But this follows from Corollary 8.1, because by Proposition 5.4 trajectories tangent to
the same confocal conic belong to the same level set of the Joachimsthal integral. Note also that even
though this level set of the Joachimsthal integral is not connected, it lies in the blue region in Figure 19,
which means that each connected component of the level set is preserved by the billiard map. Therefore,
we can simply apply Corollary 8.1 with M being the upper part of the blue region (it is also not too hard
to modify this argument to work for the green region as well).

To prove the theorem for arbitrary, not necessarily confocal, ellipses E1, E2, one can use a projective
transformation taking them to confocal ones. For details, see e.g. [11, Section 3].

Lecture 9: Algebraic integrability of elliptic billiards I

We will now discuss the concept of algebraic integrability. Algebraic integrability is a different approach
to establishing quasiperiodic dynamics, based on complex geometry. The advantage of this approach, as
compared to the one provided by the Arnold-Liouville theorem, is that it explains the geometric meaning
of the coordinate φ in which an integrable map is a rotation. It turns out that in order to reveal this
meaning, one needs to complexify the phase space as well as the level sets of the first integral. We will
demonstrate this approach by showing how it works in the elliptic billiard example. Our exposition is a
variation on the proof of Poncelet’s closure theorem by P. Griffiths and J. Harris [5].

Recall that the phase space M of the billiard in an ellipse E1 consists of pairs (x, v), where x ∈ E1 is
a point on the ellipse, and v ∈ TxR2 is an inward tangent vector at x. Clearly, for fixed x, the vector
v is uniquely determined by the non-oriented direction that it defines. Moreover, almost all directions
are realized in this way, except for the direction of the tangent line at x. So, one can regard v as an
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element of RP1 which is allowed to take any value except for one. For the sequel, it will be convenient
to allow that value corresponding to the tangent line as well. This turns the phase space into the direct
product E1 × RP1, i.e. a torus. In terms of the phase cylinder M , adding tangent directions corresponds
to identifying the opposite boundaries of M . One can easily see that both the billiard map, and its first
integral are well-defined on this toric version of the phase space (for vectors v tangent to the ellipse, we
set J = 0 and define the billiard map to be the identity).

The complexified version of the phase space can now be defined as the space of pairs (x, v), where x
belongs to the complex ellipse, and v ∈ CP1 is a direction. A complex ellipse3 is defined in the complex
plane C2 by the same equation as its real counterpart, i.e.

x21
a21

+
x22
a22

= 1. (19)

However, this set is not compact, which is inconvenient. In order to compactify it, we will consider
its closure inside the complex projective plane CP2. This closure is obtained by “homogenizing” the
equation (19), i.e. substituting xi = zi/z0, and multiplying by a suitable power of z0 to make the
equation polynomial. This gives

z21
a21

+
z22
a22

= z20 . (20)

We will denote the set of points in CP2 whose homogeneous coordinates satisfy this equation in the same
way as the real ellipse, i.e. E1. It can be viewed as a natural complexification of the real ellipse4. The
complexified billiard phase space is thus E1 × CP1. Furthermore, the complex conic E1 itself can in fact
be identified with CP1. In order to do that, one fixes any point x0 ∈ E1 and assigns to every x ∈ E1 the
direction of the line through x0 and x (where the direction assigned to x0 itself is the limiting position
of the chord x0x as x → x0, i.e. the tangent line to E1 at x0). This gives a one-to-one correspondence
E1 ' CP1, which is moreover a biholomorphic map between complex manifolds. Thus, the complexified
billiard phase space is complex diffeomorphic to CP1 × CP1, while from the real point of view it is the
product of spheres S2 × S2.

We now complexify a regular level set Ma of the Joachimsthal integral J . To that end, recall that
by Proposition 5.4 such a level set can be described as the set of segments of billiard trajectories which
are tangent to a given confocal conic E2. In the complex setting, we use this property as the definition
of Ma: Ma is the set of pairs (x, v) ∈ E1 × CP1 such that the (complex) line through x with direction v
is tangent to a fixed complex conic E2 confocal with E1 (confocality in the complex projective setting can
be defined by the homogenized version of the equation (10)). This tangency condition is algebraic, so Ma

is defined as a subset of CP1 × CP1 satisfying an algebraic equation. In any affine chart in CP1 × CP1,
this condition can be written in the form f(z, w) = 0, and for generic conics E1, E2, the zero level set of f
is regular. Therefore, Ma is a one-dimensional complex (and hence two-dimensional real) submanifold of
CP1 × CP1. In the next lecture, we will investigate the topology of that manifold.

3In the complex setting, there is no difference between ellipses and hyperbolas, because one can always change the sign
of the second term in the left-hand side of (19) by means of a change of variables x2 7→

√
−1x2. So, in what follows, instead

of talking about complex ellipses and hyperbolas, we will just use the word conics.
4Note that equation (20) describes ellipses, hyperbolas, and also parabolas. Indeed, a parabola is defined by the equation

x2 = x2
1, whose homogeneous form is z0z2 = z21 . By making a change of variables z0 7→ z0 − z2, z2 7→ z0 + z2, we can rewrite

this equation in the form (20). The same is actually true in the real projective setting: in RP2 ellipses, hyperbolas, and
parabolas are all projectively equivalent to each other.
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x1 x2 x3 x4

Ma

CP1

Figure 21: The complexified level set of the first integral is a double covering of CP1 ramified at four
points.

Lecture 10: Algebraic integrability of elliptic billiards II

In the previous lecture we defined the complexified level set Ma of the Joachimsthal integral as the set
of pairs (x, v) ∈ CP2 × CP1 such that x belongs to a fixed conic E1 ⊂ CP2, and the line through x in
direction v is tangent to another fixed conic E2 confocal with E1. For generic conics E1, E2, the set Ma

is a smooth manifold of complex dimension one and real dimension two. Also note that Ma is compact
as a closed subset of a compact manifold. Furthermore, we claim that Ma is connected. To prove that
consider the projection π : Ma → E1 ' CP1 given by (x, v) 7→ x. The number of preimages of a point
x ∈ E1 under this projection is the number of tangent lines to E2 through x. One can easily show that
the number of tangent lines to a given conic E ⊂ CP2 through a given point x ∈ CP2 is exactly two,
unless x ∈ E . In the latter case, there is only one tangent line, that is the tangent to E at x. Thus π−1(x)
consists of two points if x /∈ E2, and one point if x ∈ E2. But x ∈ E2 if and only if x is an intersection
point of E1, E2, and for generic conics in CP2 there are exactly four such intersection points. So, there
exist four points x1, x2, x3, x4 ∈ E1 such that |π−1(xi)| = 1, while for points x 6= xi we have |π−1(x)| = 2.
Since the mapping π : Ma → CP1 is 2-to-1 everywhere except for four points, one says that Ma is a double
covering of CP1 ramified at four points. The mapping π is schematically shown in Figure 21 (of course,
Ma does not really have self-intersection points, because it is smooth; a better model for the behavior of
the map π near the preimages of the points xi is given by the map z 7→ z2 near the origin; one can indeed
show that π takes this form in an appropriate coordinate system near π−1(xi)). It is clear from this figure
that Ma is connected: any two points in Ma can be connected by a path through one of the ramification
points π−1(xi).

Thus, Ma is a compact connected manifold of real dimension two. Furthermore, Ma is orientable.
Indeed, Ma is a complex manifold and thus has holomorphic transition functions. But any holomorphic
function viewed as a map from R2 → R2 has positive Jacobian.

Now recall that any compact connected orientable surface is diffeomorphic to a “sphere with g handles”.
The number g is known as the genus of the surface. For example, a surface of genus zero is a sphere, a
surface of genus one is a torus, a surface of genus two is a pretzel etc. The genus is closely related to the
notion of Euler characteristic. The latter can be computed by considering an arbitrary triangulation of
the surface. For any triangulation, let v be the number of vertices, e be the number of edges, and f be the
number of faces. Then the Euler characteristic is defined as χ = v − e+ f ; this number does not depend
on the triangulation. The Euler characteristic χ and the genus g are related by the formula χ = 2− 2g.

We will now compute the Euler characteristic, and hence the genus, of the surface Ma using that it is a
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double covering of CP1 ramified at four points. To that end, connect each of the points x1, x2, x3, x4 ∈ CP1

to each other by an edge. This can be done without self-intersection, and gives a triangulation of CP1

which combinatorially look like a tetrahedron. It has four vertices, six edges, and four faces. Note that
4− 6 + 4 = 2, which agrees with the fact that the Euler characteristic of CP1 ' S2 is equal to 2. We now
lift this triangulation to Ma by considering the preimages of vertices, edges, and faces under the mapping
π. This gives a triangulation of Ma. The number of vertices of that triangulation is still four, because
each of the points xi has exactly one preimage under π. However, the number of edges and faces doubles,
because points x 6= xi have two preimages. So, we obtain a triangulation of Ma with four vertices, twelve
edges, and eight faces. Thus, the Euler characteristic of Ma is χ = 4 − 12 + 8 = 0, which means that
g = 1, i.e. Ma is a torus.

We are now almost ready to describe the behavior of the complexified billiard map restricted to Ma.
As a last preparatory step, we will need a description of holomorphic maps from a complex torus to itself.
This description is based on the following fundamental result in complex geometry:

Theorem 10.1 (Uniformization theorem in genus one). Let X be a Riemann surface of genus one,
i.e. a complex one-dimensional manifold which is real diffeomorphic to a torus. Then X is complex
diffeomorphic to a surface of the form C/L, where L ⊂ C is a full rank lattice, i.e. the set of integral
linear combinations of two complex numbers which are linearly independent over R.

We can now prove that there are very few holomorphic maps from a Riemann surface of genus one to
itself (in fact, for higher genera there are even less):

Proposition 10.2. Assume that φ : C/L→ C/L is a holomorphic map from a Riemann surface of genus
one to itself. Then φ is linear, i.e. φ(z) = αz + β.

Proof. The mapping φ can be viewed as a multivalued holomorphic function on C/L, which is defined up to
addition of complex numbers z ∈ L. Therefore, the derivative of φ is a genuine single-valued holomorphic
function. But by the maximum principle there can be no non-constant holomorphic functions on a
compact complex manifold. Thus φ′ is constant, and φ is linear, as desired.

Remark 10.3. Not every function of the form αz + β defines a holomorphic map C/L→ C/L, because
multiplication by α may not commute with the action of L on C and hence may not descend to the
quotient C/L. In fact one can show that for generic lattices L the only bijective holomorphic maps
C/L→ C/L are of the form z 7→ ±z + β.

We could in principle use this remark to prove that the restriction of the complexified billiard map
to Ma is a translation z 7→ z + β, at least if the corresponding lattice L is generic. Indeed, the billiard
map cannot be of the form z 7→ −z + β, because the latter map is an involution, i.e. its square is the
identity. However, the square of the billiard map is not identity for generic Ma, which means that the
billiard map is of the form z 7→ z + β for almost all, and hence for all (by continuity), non-singular level
sets Ma. Furthermore, this argument can be modified to work even for non-generic lattices, because even
for such lattices any automorphism of C/L which is not a translation has finite order. However, we will
not pursue this approach, because in our setting it is easier to use the explicit description of the billiard
map to show that it is a translation.

Proposition 10.4. The billiard map T for the ellipse, restricted to the complexified level set Ma of
the first integral, is a translation relative to the group structure on Ma coming from the identification
Ma ' C/L.

Remark 10.5. The group structure on Ma is not completely unique, but it can be made unique by
specifying a point O ∈ Ma which is identified with the origin in C/L. Indeed, if f ,g are two different
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biholomorphic maps from Ma to C/L which take O to 0, then f ◦ g−1 is a biholmorphic automorphism of
C/L which preserves 0. Therefore, from the above classification of holomorphic maps of C/L to itself it
follows that f ◦ g−1 is of the form z 7→ az. But any such map is a homomorphism of C/L to itself, which
guarantees that the pull-backs of the group structure from C/L to Ma by means of f and g coincide5.
Thus, any (compact and connected) Riemann surface of genus 1 with a distinguished point has a canonical
group structure. A pair consisting of a Riemann surface of genus 1 and a distinguished point on it is
called an elliptic curve. Sometimes this term is also used as a synonym for Riemann surface of genus 1
(without a distinguished point). Also note that the notion of a translation does not depend on the choice
of the distinguished point (similarly to how the notion of translation in the affine space does not depend
on the choice of the origin).

Proof of Proposition 10.4. We can think of Ma as the space of pairs (x, l), where x is a point in the conic
E1, and l is a line through x tangent to E2. The billiard map T : Ma → Ma takes the pair (x, l) to the
pair (x′, l′), where x′ is the second intersection point of l with E1 (along with x), and l′ is the second
tangent line from x′ to E2 (along with l). Therefore, the billiard map can be written as a composition
σ2 ◦ σ1, where the maps σ1,2 : Ma → Ma are defined by σ1(x, l) = (x′, l), σ2(x

′, l) = (x′, l′). In other
words, σ1 interchanges the endpoints of a given tangent line to E2, while σ2 swaps the tangent lines to
E2 passing through a fixed point. In particular, both maps σ1 and σ2 are involutions, i.e. σ21 = σ22 is
the identity map. Also note that both σ1 and σ2 can be computed by solving a quadratic equation. For
σ1, this is the equation determining the intersection points of a line and a conic. For σ2, this is the
equation determining the tangent lines to a conic from a given point. In both cases, one of the roots of
the corresponding quadratic equation is known, so the second root can be found by the Vieta theorem.
This guarantees that the maps σ1,2 : Ma → Ma are holomorphic. So, the billiard map T = σ2 ◦ σ1 is
holomorphic as well. Thus, we can apply our classification of holomorphic maps C/L→ C/L to T . it is,
however, easier to first use that classification to describe the maps σ1, σ2. Assume that σ : C/L → C/L
is a holomorphic involution. Then σ(z) = az + b, and since it is an involution, we must have a = ±1.
Furthermore, if a = +1, then σ(z) = az + b = z + b is an involution if and only if 2b ∈ L. To distinguish
between involutions σ(z) = −z + b and σ(z) = z + b, where 2b ∈ L, one can count the fixed points of
σ. In the σ(z) = z + b case there is no fixed points unless b ∈ L, in which case σ is the identity. In the
case σ(z) = −z + b there is at least one fixed point, 1

2b (in fact, one can show that there are four fixed
points). So, any non-trivial involution σ : C/L → C/L with fixed points must be of the form z 7→ b − z.
Now observe that the involutions σ1,2 have fixed points. For σ1, the fixed points are of the form (x, l),
where x ∈ E1 ∩ E2, and l is the tangent line to E2 at x. For σ1, the fixed points are of the form (x, l),
where l has a property of being tangent to both E1 and E2. Thus, we have σ1(z) = b1− z, σ2(z) = b2− z.
So, T (z) = σ2(σ1(z)) = z + b2 − b1, as desired.

Remark 10.6. As we know from Lecture 6, the real part of Ma consists of two circles. We thus have two
closed curves on the torus Ma. According to Lecture 6 the billiard map may either preserve each of these
circles (if we are in the blue region) or interchange them (if we are in the green region). This situation can
be understood by looking at the following model example (in fact, one can prove that this is exactly what
is happening). Consider the lattice L spanned by 1 and τ

√
−1, where τ 6= 0 is real. Then this lattice is

invariant under complex conjugation. Therefore, one has a well-defined complex conjugation operation on
C/L (in this case one also says that the complex curve C/L is endowed with a real structure). The set of
real points in C/L consists of points that are invariant under complex conjugation. This set is a union of
two circles, one of which is the image of the real axis in C, and the second one consists of numbers whose
imaginary part is 1

2τ
√
−1. Then we have two kinds of translations in C/L which preserve the set of the

5We define a pull-back of the group structure by f : Ma → C/L as the unique group structure on Ma such that f is an
isomorphism relative to that structure. Explicitly, the addition in this group structure is defined by x+y = f−1(f(x)+f(y)).
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real points: translation by a real number, and translation by a number whose imaginary part is 1
2τ
√
−1.

Translations of the first type clearly preserve the components of the real part of C/L, while translations
of the second type interchange them.

Remark 10.7. Both the Arnold-Liouville theorem, and the complex geometric approach provide a coor-
dinate φ defined modulo 2π and such that the billiard map written in this coordinate is a translation. We
claim that the coordinates coming from these two approaches coincide. Indeed, assume that φ, ψ are two
such coordinates. Then the billiard map must preserve two non-vanishing 1-forms dφ and dψ. The ratio
of these 1-forms is then a well-defined smooth function on the circle invariant under the billiard map.
But if the billiard map is a rotation by an angle which is not a rational multiple of 2π, then its orbits are
dense and it does not admit non-constant invariant functions. So dψ should be a constant multiple of dφ,
and since have integral 2π over the whole circle, they must coincide. Therefore, φ and ψ are the same
up to an additive constant. Note this is also true for level sets on which the rotation angle is a rational
multiple of 2π, by continuity.

Exercises.

1. Explain why any line and any conic in the complex projective plane either intersect at two distinct
points, or are tangent to each other.

2. This exercise suggests a useful method or proving results in projective geometry, based on projective
duality. Recall that the dual projective plane is defined as the set of straight lines in the given
projective plane. More concretely, every line l is defined in homogeneous coordinates by an equation
of the form a0z0 + a1z1 + a2z2 = 0, and a0, a1, a2 are, by definition, the homogeneous coordinates of
l in the dual projective plane. Show that straight lines passing through a given point form a straight
line in the dual projective plane, and all lines in the dual plane are of this form (thus points of the
dual plane can be identified with lines in the initial one, and vice versa). Then show that the set
of tangents to a given conic forms a conic in the dual projective plane (the dual conic). Using this
and the result of the previous exercise, prove that there always exist two distinct tangent lines to a
given conic through a given point, provided that the point does not lie on the conic.

3. Consider the level set of the the Joachimsthal integral that corresponds to trajectories through the
foci of the ellipse (this set is the boundary between two different colors in Figure 19). Show that
the complexification of that level set is homeomorphic to two spheres attached to each other at two
points.

4. Prove that each of the four pieces obtained by removing critical points from that level set admits
a coordinate relative to which the billiard map T is a translation. Show that for any x in any of
these four pieces the sequence Tn(x) converges to a critical point. What geometric behaviour of the
billiard trajectories does this correspond to?

5. For the billiard in a circle C define the complexified level set of the first integral as the set of pairs
(x, l), where x is a point in the circle C and l is a line through x tangent to a fixed circle concentric
with C. Prove that in this case each such level set is homeomorphic to two spheres attached to each
other at two points.

6. Let p(x) be a cubic polynomial without multiple roots. Prove that the closure of the complex curve
y2 = p(x) in CP2 is diffeomorphic to a torus.
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Lecture 11: Canonical Hamilton’s equations

In this lecture we discuss Hamilton’s canonical formalism, which can be viewed as an ancestor of modern
symplectic geometry. Let q = (q1, . . . , qn) be a point of mass m in Rn moving in the potential force
field with potential U(q) = U(q1, . . . , qn). Then, by definition of the potential, the force field is given by
F = −gradU(q), and Newton’s second law gives

mq′′i = −∂U
∂qi

,

where prime stands for the time derivative. We want to rewrite these equations as first order equations.
To that end, introduce the momenta pi = mq′i. Then we get

p′i = −∂U
∂qi

,

q′i =
1

m
pi.

This can be further rewritten by introducing the function

H = U +
m

2

n∑
i=1

(q′i)
2 = U +

1

2m

n∑
i=1

(pi)
2,

which has the physical meaning of total energy and is also known as the Hamiltonian. In terms of this
function, the above system can be rewritten as

p′i = − ∂H

∂qi
,

q′i =
∂H

∂pi
.

These equations are known as canonical Hamilton’s equations. In vector form, these equations can be
rewritten as

x′ = πdH(x),

where x is the column vector (p, q)t = (p1, . . . , pn, q1, . . . , qn)t, and π is the matrix

π =

(
0 −Id
Id 0

)
.

Note that π takes a covector dH(x) to a vector x′. So, for every x ∈ Rn, the matrix π should be thought
of as a map from the cotangent space at x to the tangent space at x. We can, therefore, also regard π as
a bilinear form on cotangent vectors. Explicitly, this form can be written as

π = −
n∑
i=1

∂

∂pi
∧ ∂

∂qi
.

This form is skew-symmetric. Bilinear skew-symmetric forms on the dual space are also known as bivectors
(we can also say that π is a bivector field, because it is a bivector defined on every tangent space). This
particular bivector π entering Hamilton’s equation is called the Poisson tensor.

One can also rewrite Hamilton’s equation in terms of the symplectic structure. The latter is defined as
ω = π−1. It is a map from the tangent space to the cotangent space, and thus can be viewed as a 2-form.
By inverting the matrix of π we get

ω =

(
0 Id
−Id 0

)
,
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so

ω =
n∑
i=1

dpi ∧ dqi.

Note, in particular, that this form is closed. This property is very important and is included as one of the
requirements in the abstract definition of a symplectic structure: a symplectic structure on a manifold is a
closed non-degenerate skew-symmetric 2-form. We will be discussing the notion of an abstract symplectic
structure, as well as of an abstract Poisson structure, in the next few lectures. We will also return to
the above example of motion in the potential force field and see that this corresponds to a canonical
symplectic structure on the cotangent bundle.

Lecture 12: Symplectic vector spaces and symplectic manifolds

Definition 12.1. A symplectic vector space is a vector space V endowed with a symplectic form ω, i.e.
a non-degenerate skew-symmetric bilinear form.

Example 12.2. There exist no symplectic structures on one-dimensional vector spaces. Indeed, let V
be a one-dimensional vector space, and let v be a basis vector in V . Then by skew-symmetry we have
ω(v, v) = 0, so ω is identically zero and hence degenerate.

Example 12.3. Any two-dimensional vector space V admits a symplectic structure. Such a structure is
uniquely defined by ω(v1, v2) = 1, where v1, v2 is any fixed basis in V . By skew-symmetry we also have
ω(v2, v1) = −1, ω(v1, v1) = 1, ω(v2, v2) = 0, so the matrix of ω in the basis v1, v2 is

Ω =

(
0 1
−1 0

)
.

More generally, one has the following:

Proposition 12.4. A finite-dimensional vector space V admits a symplectic structure if and only if V is
even-dimensional.

Proof. Let V be a symplectic vector space, and let Ω be the matrix of the symplectic form written in
some basis. Then Ω is skew-symmetric, so

det Ω = det(−Ωt) = (−1)dimV det Ωt = (−1)dimV det Ω.

From the non-degeneracy of the symplectic structure we have that det Ω 6= 0, so it follows that (−1)dimV =
1, which means that V is even-dimensional. Conversely, if V is even-dimensional, then we can define a
symplectic structure ω by taking a basis and considering a bilinear form which in this basis is given by
the following block-diagonal matrix:

Ω =


0 1
−1 0

0 1
−1 0

. . .

 (21)

It turns out that the above example of a symplectic form on an even-dimensional vector space is in
fact universal in the following sense:
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Theorem 12.5 (Linear Darboux theorem). In any finite-dimensional symplectic vector space there exists
a basis in which the matrix of the symplectic form is (21).

Remark 12.6. By rearranging basis vectors v1, . . . , v2n as v1, v3, . . . , v2n−1, v2, v4, . . . , v2n we can also
rewrite the above matrix as (

0 Id
−Id 0

)
, (22)

which is an already familiar to us symplectic structure of canonical Hamilton’s equations.

This theorem can be proved by induction, based on the notion of a symplectic orthogonal complement,
or, which is the same, skew-orthogonal complement. If W is a subspace of a symplectic vector space (V, ω),
then its orthogonal complement is defined by

W⊥ = {v ∈ V | ω(v, w) = 0∀w ∈W}.

In contrast to the orthogonal complement in an inner product space, the symplectic orthogonal comple-
ment may not be an actual complement, i.e. in general it is not true that V = W ⊕W⊥. The reason for
that is that W and W⊥ may have non-trivial intersection. For example, any vector is symplectic orthogo-
nal to itself, so any one-dimensional subspace is contained in its own symplectic orthogonal complement.
However, even though W and W⊥ are in general not complementary to each other, their dimensions
always are:

Lemma 12.7. For any subspace W of a symplectic vector space V , we have dimW⊥ = dimV − dimW .

Proof. Consider the symplectic structure ω as a linear map V → V ∗. Then ω(W ) consists of those
covectors which annihilate W . So, by linear algebra we have dimω(W ) = dimV − dimW . But ω is
non-degenerate, so dimω(W ) = dimW , which proves the desired equality.

Exercise 12.8. Deduce the linear Darboux theorem from this lemma.

The following subspaces in a symplectic vector space are of particular interest:

Definition 12.9. A subspace W of a symplectic vector space (V, ω) is called isotropic if the restriction
of ω to W is zero, i.e. if ω(w1, w2) = 0 for any w1, w2 ∈W .

Example 12.10. Any one-dimensional subspace is isotropic.

Example 12.11. Assume that the symplectic form is given, in some basis v1, . . . , v2n by the matrix (22).
Then the subspace spanned by any subset of v1, . . . , vn is isotropic, and so is the subspace spanned by
any subset of vn+1, . . . , v2n.

Proposition 12.12. The dimension of an isotropic subspace of a symplectic vector space V may not
exceed 1

2 dimV .

Proof. A subspace W is isotropic if and only if it is contained in its orthogonal complement W⊥. So, if
W is isotropic, then

dimW ≤ dimW⊥ = dimV − dimW,

which implies
2 dimW ≤ dimV,

q.e.d.

30



Definition 12.13. An istropic subspace W of a symplectic vector space V is called Lagrangian if it has
maximal possible dimension 1

2 dimV .

Lagrangian subspaces are also maximal isotropic in the sense that any isotropic subspace can be
extended to a Lagrangian subspace. Indeed, if we have a non-Lagrangian isotropic subspace W , then by
dimension reasons W is strictly contained in W⊥, which implies that there exist vectors not in W which
are orthogonal to all of W . Adding any such vector to W increases its dimension, and by doing so several
times we will finally make W Lagrangian.

Example 12.14. Any one-dimensional subspace of a two-dimensional symplectic space is Lagrangian.

Example 12.15. Assume that the symplectic form is given, in some basis v1, . . . , v2n by the matrix (22).
Then the subspace spanned by v1, . . . , vn is Lagrangian, and so is the subspace spanned by vn+1, . . . , v2n.

We now turn our attention to symplectic manifolds.

Definition 12.16. A symplectic manifold is a manifold M endowed with a symplectic form (or symplectic
structure) ω, i.e. a closed non-degenerate differential 2-form.

Since the tangent space of a symplectic manifold at every point is a symplectic vector space, it follows
that there exist no odd-dimensional symplectic manifolds. So, the simplest example of a symplectic
manifold is a two-dimensional one:

Proposition 12.17. Any orientable two-dimensional manifold admits a symplectic structure.

Proof. The closedness condition of a 2-form on a 2-manifold is vacuous, so a symplectic form in 2D is
the same as an area form, i.e. a non-vanishing differential 2-form. Such a form can be constructed, for
example, using a partition of unity subordinate to any oriented atlas (i.e. an atlas whose transition maps
are orientation-preserving), or using a Riemannian metric.

Clearly, orientability condition cannot be omitted, because an area form defines an orientation. So,
there is no symplectic structures on non-orientable 2D manifolds. More generally, we have the following:

Proposition 12.18. Any symplectic manifold is orientable.

Proof. Let M be a 2n-dimensional manifold with symplectic structure ω. Then from non-degeneracy of
ω it follows that the 2n-form

∧nω = ω ∧ · · · ∧ ω︸ ︷︷ ︸
n times

is non-vanishing and hence a volume form. Therefore, M is orientable.

One of the most important examples of a symplectic manifold is the cotangent bundle:

Proposition 12.19. The cotangent bundle of any manifold M has a canonical symplectic structure.

Proof. We will first construct a 1-form λ on T ∗M , and then define a symplectic structure ω by ω = dλ. To
define a 1-form we should describe its value on any tangent vector v. Assume that v ∈ T(q,p)T ∗M , where
(q, p) is a point in T ∗M , i.e. q ∈M and p ∈ T ∗qM . To define λ(v), consider the projection π : T ∗M →M
given by (q, p) 7→ q. Then λ(v) is defined by

λ(v) = p(dπ(v)).

This is known as the tautological 1-form on the cotangent bundle, or Liouville 1-form. Let us compute
this form in coordinates. Take any local chart (q1, . . . , qn) on M . Then this chart also defines coordinates
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on every cotangent space (which is within this chart). Those coordinates (p1, . . . , pn) are, by definition,
coordinates of a covector in the basis dq1, . . . , dqn. Then (p1, . . . , pn, q1, . . . , qn) form a local coordinate
system on T ∗M . In these coordinates, the projection π is given by

(p1, . . . , pn, q1, . . . , qn) 7→ (q1, . . . , qn),

so the differential of the projection maps ∂/∂pi to 0 and ∂/∂qi to ∂/∂qi. We now take any v ∈ T(q,p)T ∗M .
This vector can be written as

v =
n∑
i=1

dpi(v)
∂

∂pi
+

n∑
i=1

dqi(v)
∂

∂qi
.

Therefore,

dπ(v) =
n∑
i=1

dqi(v)
∂

∂qi
,

and

λ(v) = p(dπ(v)) = p

(
n∑
i=1

dqi(v)
∂

∂qi

)
= pi(v)dqi(v),

so in (p, q) coordinates the form λ reads

λ =

n∑
i=1

pidqi.

We now define the form ω by

ω = dλ =

n∑
i=1

dpi ∧ dqi.

This 2-form is automatically closed (since it is exact) and from the coordinate representation it is clear
that ω is non-degenerate. Therefore, ω is indeed a symplectic structure. It is canonical in a sense that
its construction can be performed without coordinates and does not require any additional structures
on M .

Corollary 12.20. The cotangent bundle of any manifold has a canonical volume form and is orientable.

Proof. The volume form is defined as ∧nω.

Lecture 13: Vector fields and flows I

Let M be a manifold, and let v be a vector field on M .

Definition 13.1. A parametrized smooth curve γ(t) is called an integral trajectory of v if

dγ

dt
= v(γ(t))

for any t for which γ(t) is defined.

In other words, at any point of an integral trajectory its velocity vector coincides with the value of
the vector field v at that point.

Proposition 13.2. For any x ∈M there exists a unique integral trajectory γ(t) of v defined for t ∈ (−ε, ε),
where ε > 0, such that γ(0) = x.
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Proof. Let x1, . . . , xn be local coordinates near the point x. Then the sought integral trajectory can be
written in these coordinates as a vector function x1(t), . . . , xn(t), and the condition on that function to
define an integral trajectory of v is equivalent to the system of ODEs

ẋi = vi(x1, . . . , xn),

where vi’s are components of the vector field v in coordinates x1, . . . , xn. Furthermore, the requirement
γ(0) = x specifies an initial condition for this system of ODEs, so the desired statement follows from the
existence and uniqueness theorem for ODEs.

As can be seen from this proof, vector fields can be thought of as systems of ODEs on manifolds.
“Solving” a vector field means finding its integral trajectories. In local coordinates this is equivalent to
solving actual systems of ODEs.

Definition 13.3. A vector field v is called complete if any its integral trajectory γ(t) is defined for any
t ∈ R.

As we know from the theory of ODEs, not every vector field is complete. For example, the vector
field defined by the differential equation ẋ = x2 (that is v = x2∂/∂x) on R is not complete. Indeed, its
integral trajectories are given by x(t) = 1/(c− t) and hence are not defined for every value of t.

Theorem 13.4. Any vector field on a compact manifold is complete.

The proof is quite straightforward and can be found in most differential geometry textbooks.

Definition 13.5. Let v be a complete vector field on M . The flow of v is a family of transformations
φt : M →M defined as follows. Let γ(t) be an integral trajectory of v with γ(0) = x. Then φt(x) = γ(t).

One can also define the flow of an incomplete vector field, but that is, in general, only defined locally
(i.e. in a neighbourhood of a given point x ∈ M) and only for t ∈ (−ε, ε). The definition of the flow φt
can also be expressed by saying that

d

dt
φt(x) = v(φt(x)).

In order to be equivalent to the above definition, this equation needs to be supplemented by the condition
φ0 = id. This equation is also sometimes written as

d

dt
φt = v ◦ φt.

Proposition 13.6. The flow φt is a diffeomorphism for every t.

Proof. Smoothness of φt follows from smooth dependence of solutions of ODEs on initial conditions.
Furthermore, φ−1t is also smooth since φ−1t = φ−t.

Along with the property φ−1t = φ−t, we also have that φt ◦ φs = φs+t and φ0 = id. In other words,
the diffeomorphisms φt (considered for all values of t) form a group under composition. This group is
isomorphic to R with isomorphism given by t 7→ φt. Due to these properties, the flows of vector fields are
also called 1-parametric groups of diffeomorphisms.

We now want to discuss how flows of vector fields act on different geometric objects on M , in particular
on tensor fields. Let ξ be a tensor field. Then one can consider the pull-back φ∗t ξ. It is again a tensor field,
of the same type as ξ. This in particular allows us to compute the derivative d/dt (φ∗t ξ) . This derivative
is defined point-wisely: for any x we evaluate the tensor field φ∗t ξ at that particular point x. That gives
a family of tensors at x depending on the parameter t. This family can be differentiate with respect to t,
which produces a new tensor of the same type.
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Definition 13.7. The Lie derivative of a tensor field ξ with respect to the vector field v is defined by

Lvξ =
d

dt

∣∣∣∣
t=0

(φ∗t ξ) ,

where φt is the flow of v.

The Lie derivative Lvξ is a tensor field of the same type as ξ.

Proposition 13.8. The Lie derivative Lvξ vanishes if and only if ξ is invariant under the flow, i.e.

φ∗t ξ = ξ. (23)

Proof. Assume that ξ is invariant under the flow. Then differentiating (23) with respect to t at t = 0
gives Lvξ = 0. Conversely, assume that Lvξ = 0. To establish (23), we show that

d

dt
(φ∗t ξ) = 0.

for every t. We have
d

dt

∣∣∣∣
t=t0

(φ∗t ξ) =
d

dt

∣∣∣∣
t=0

(
φ∗t+t0ξ

)
.

Using the group property of the flow, this can be further rewritten as

d

dt

∣∣∣∣
t=0

(
φ∗t0φ

∗
t ξ
)

= φ∗t0

(
d

dt

∣∣∣∣
t=0

(φ∗t ξ)

)
= φ∗t0 (Lvξ) = 0,

as desired.

Lecture 14: Vector fields and flows II

In the case when ξ itself is a vector field ξ = w, the condition Lvw = 0 is also equivalent to the fact that
the flows of v and w commute:

Proposition 14.1. Let v, w be vector fields on a manifold M . Then Lvw = 0 if and only if the flow
{φt | t ∈ R} of v commutes with the flow {ψt | t ∈ R} of w, which means that

φt ◦ ψt′ = ψt′ ◦ φt ∀ t, t′ ∈ R.

Proof sketch. As we know, Lvw = 0 is equivalent to the fact that φ∗tw = w for any t ∈ R. The latter
in turn is equivalent to φt preserving integral trajectories of w, i.e. if γ(t) is an integral trajectory of w,
then so is φt(γ(t)). Let us, for example, show that if φ∗tw = w for any t ∈ R then φt preserves integral
trajectories. Let γ(t) be an integral trajectory of w. We want to show that φt(γ(t)) is also an integral
trajectory. To that end, observe that the derivative

d

dt
φt(γ(t))

is equal to the push-forward of the tangent vector γ′(t) = w(γ(t)) by the map φt, which is the same as
the pull-back by γ−t. Also using that φ∗tw = w for any t, we get

d

dt
φt(γ(t)) = (φ∗−tw)(γ(t)) = w(γ(t)),
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which means that φt(γ(t)) is indeed an integral trajectory of w.
It now suffices to show that φt preserves integral trajectories of w if and only if it commutes with the

flow of w. This is almost a tautology. Indeed, equation φt ◦ ψt′ = ψt′ ◦ φt means that

φt(ψt′(x)) = ψt′(φt(x)) ∀x ∈M. (24)

But ψt′(x) considered as a function of t′ (for fixed x) is an integral trajectory of w, and all integral
trajectories of w are, by definition, of this form. Similarly, ψt′(φt(x)) is also an integral trajectory of w
(for fixed x and t). So, if the flows commute, then φt maps integral trajectories of w to integral trajectories
of w. Conversely, if φt maps integral trajectories of w to integral trajectories of w, then it must map a
trajectory starting at x to the trajectory starting at φt(x). But these trajectories are given by ψt′(x) and
ψt′(φt(x)), which gives (24).

We will now discuss hot to compute the Lie derivative Lvξ for particular types of tensors. We start
with functions:

Proposition 14.2. If f is a smooth function, then Lvf is equal to the directional derivative of f along v:

Lvf = df(v). (25)

Proof. We have

(Lvf)(x) =
d

dt

∣∣∣∣
t=0

(φ∗t f) (x) =
d

dt

∣∣∣∣
t=0

f(φt(x)) = df

(
d

dt

∣∣∣∣
t=0

φt(x)

)
= df(v(x)),

q.e.d.

Corollary 14.3. For a function f and vector field v, the following conditions are equivalent:

1. The directional (equivalently, Lie) derivative of f along v vanishes: Lvf = df(v) = 0.

2. The function f is preserved by the flow of v.

3. The function f is constant along integral trajectories of v.

Proof. The first two conditions are equivalent by Proposition 13.8. The last two conditions are equivalent
because

(φ∗t f) (x) = f(φt(x)),

so f is preserved by the flow if and only if it is constant along curves of the form φt(x) (for fixed x). But
such curves are, by definition, exactly the integral trajectories of v.

Formula (25) can also be rewritten as

Lvf = ivdf, (26)

where the operation iv is defined for an arbitrary k-form as follows: if ξ is a k-form, then ivξ is a
(k − 1)-form given by

ivξ(w1, . . . , wk−1) = ξ(v, w1, . . . , wk−1).

For k-forms the formula for the Lie derivative is similar to (26) but has one more additional term:
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Proposition 14.4 (Cartan’s magic formula). Let ξ be a differential form, and v be a vector field. Then

Lvξ = ivdξ + divξ.

In other words, for differential forms we have

Lv = ivd+ div.

Proof sketch. Using the fact that pull-backs commute with wedge products, one establishes the product
rule for the Lie derivative: Lv(α ∧ β) = (Lvα) ∧ β + α ∧ (Lvβ). The right hand side of Cartan’s formula
can also be shown to obey this rule, which reduces the proof to the case of ξ = dxi, where xi is a local
coordinate. But since pull-backs also commute with the exterior derivative, it follows that Lvd = dLv,
and thus

Lv(dxi) = d(Lvxi) = d(ivdxi),

which coincides with Cartan’s formula in the case ξ = dxi.

We now establish a formula for the Lie derivative of a vector field. To that end, we will need the
notion of the commutator (Lie bracket) of vector fields:

Definition 14.5. The Lie bracket of two vector fields v, w is the unique vector field [v, w] such that

L[v,w]f = LvLwf − LwLvf

for any function f .

Proposition 14.6. Such a vector field [v, w] exists and it is indeed unique.

Proof. If there were two such vector fields u and u′ then we would have Luf = Lu′f for any f , i.e.

df(u− u′) = 0.

But any cotangent vector at any point is the differential of a suitable function, so all cotangent vectors
vanish on u − u′, which means that u − u′ = 0 and u = u′. This proves uniqueness. As for existence, it
is sufficient to verify it locally, because then by the uniqueness part so-defined local vector fields can be
patched into a global one. In local coordinates we have

LvLwf − LwLvf =
∑
i,j

vi
∂

∂xi

(
wj

∂f

∂xj

)
− wi

∂

∂xi

(
vj
∂f

∂xj

)
.

All terms containing second derivatives cancel out, and we end up with

LvLwf − LwLvf =
∑
i,j

vi
∂wj
∂xi

∂f

∂xj
− wi

∂vj
∂xi

∂f

∂xj
,

which is the derivative of f along the vector field∑
i,j

(
vi
∂wj
∂xi
− wi

∂vj
∂xi

)
∂

∂xj
.

So, the vector field [v, w] indeed exists and it is given in local coordinates by the formula

[v, w] =
∑
i,j

(
vi
∂wj
∂xi
− wi

∂vj
∂xi

)
∂

∂xj
.
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Example 14.7. In R2 we have [
∂

∂x
,
∂

∂y

]
= 0,

since
∂

∂x

∂

∂y
f =

∂

∂y

∂

∂x
f

for any function f .

Proposition 14.8. For any vector fields v, w we have

Lvw = [v, w].

Proof sketch. From the definition of the Lie derivative it easily follows that for any vector field v and any
1-form α we have

Lv(iwα) = iLvwα+ iw(Lvα),

which can also be rewritten as
iLvwα = Lv(iwα)− iw(Lvα).

Taking α = df we get

iLvwdf = Lv(iwdf)− iw(Lvdf) = Lv(Lwf)− iw(Lvdf).

Using Cartan’s magic formula, the latter term can be rewritten as

iw(divdf) = LwLvdf,

so
iLvwdf = Lv(Lwf)− Lw(Lvdf),

which means that Lvw = [v, w], as desired.

Corollary 14.9. [v, w] = 0 if and only the flows of v and w commute.

Lecture 15: Hamiltonian vector fields

We now discuss the notion of a Hamiltonian vector field on a symplectic manifold (cf. Lecture 7).

Definition 15.1. A vector field v on a symplectic manifold (M,ω) is a Hamiltonian vector field if there
exists a smooth function H on M (called the Hamiltonian of the vector field v) such that

ivω = dH.

Explicitly, the Hamiltonian vector field with Hamiltonian H is given by ω−1dH, where ω is regarded
as an operator from the tangent space to the cotangent space. The Hamiltonian vector field corresponding
to the function H is denoted by XH or sgradH. Thus, we have

XH = sgradH = ω−1dH.

Proposition 15.2. The flow of the Hamiltonian vector field XH = ω−1dH preserves both the function
H and the symplectic form ω.
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Proof. We have
LXHH = iXHdH = iXH iXHω = ω(XH , XH) = 0,

so H is indeed preserved. Further, by Cartan’s magic formula, we get

LXHω = iXHdω + diXHω,

but ω is closed so this rewrites as
diXHω = d(dH) = 0,

which means that the symplectic form ω is preserved as well.

Corollary 15.3. The flow of a Hamiltonian vector field consists of symplectic diffeomorphisms: φ∗tω = ω.

In fact, preservation of the symplectic form ω is almost equivalent to the Hamiltonian property.
Namely, one has the following.

Proposition 15.4. Let v be a vector field on a symplectic manifold (M,ω). Then Lvω = 0 if and only
if v is locally Hamiltonian, which means that it can be written as XH in a neighbourhood of any point in
M . Furthermore, if H1(M,R) = 0, then Lvω = 0 if and only if v is Hamiltonian.

Proof. We have Lvω = d(ivω), so Lvω = 0 if and only if the 1-form ivω is closed. But closed forms can
be equivalently characterized as locally exact forms, so Lvω = 0 if and only if ivω = dH locally, which
means that v = XH . Furthermore, if H1(M,R) = 0, then closed 1-forms and exact 1-forms are the same,
so in that case Lvω = 0 if and only if v is Hamiltonian.

Vector fields v such that Lvω = 0 are known as symplectic. They can be equivalently characterized
as vector fields whose flows consist of symplectic diffeomorphisms. The above proposition shows that a
vector field is symplectic if and only if it is locally Hamiltonian. It is easy to construct an example of
a vector field which is symplectic but not globally Hamiltonian: take a closed non-exact 1-form α and
define v = ω−1α. For example, one can take α to be the differential of the polar angle function in R2

without the origin.
From Proposition 15.2 we also get the following.

Corollary 15.5 (Liouville’s theorem). Any Hamiltonian vector field preserves the volume form Ω = ∧nω.

Proof. Since the flow φt of a Hamiltonian vector field preserves ω, it also preserves ∧nω. Alternatively,
one can use the product rule for the Lie derivative:

LXH (∧nω) = (LXHω) ∧ ω ∧ ω ∧ · · · ∧ ω + ω ∧ (LXHω) ∧ ω ∧ · · · ∧ ω + · · · = 0.

We now discuss examples of Hamiltonian vector fields.

Example 15.6. Let (M,ω) be a 2-dimensional symplectic manifold (equivalently, a surface with an area
form). Let also H be a function on M . Then the level sets of H are 1-dimensional. The Hamiltonian
vector field XH is tangent to those level sets (by Proposition 15.2), which means that in the 2D case the
trajectories of XH are almost the same as level sets of H. More precisely, we have the following:

Proposition 15.7. 1. Each connected component of each regular level set of H is a trajectory of XH .

2. For an arbitrary level set H−1(c) ⊂ M , each critical point x ∈ H−1(c) is a 1-point trajectory (an
equilibrium point) of XH , and each connected component of the set of non-singular points in H−1(c)
is a trajectory of XH .
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Proof. The first statement is a particular case of the second one, so we only prove the second statement.
By definition, we have XH = ω−1dH, so critical points of H are indeed equilibrium points of XH . Consider
now the set N of non-critical points in the given level set of H. At such points we have XH 6= 0, so the
set N is a disjoint union of non-trivial (i.e. non-stationary) trajectories of XH . Furthermore, since both
N and the trajectories are 1-dimensional manifolds, each trajectory is open N . Also, each trajectory is
by definition connected. So, N is a disjoint union of open connected subsets, which means that these
subsets (the trajectories of XH) are connected components of N , q.e.d.

In R2 (as well as in the sphere S2), the class of Hamiltonian vector fields coincides with symplectic
(=area-preserving) vector fields, by Proposition 15.4. If we endow R2 we the standard area form dx∧ dy,
then the area-preserving condition for a vector field v = (vx, vy) is

Lv(dx ∧ dy) = 0.

Explicitly, we have

Lv(dx ∧ dy) = div(dx ∧ dy) = d(vxdy − vydx) =

(
∂vx
∂x

+
∂vy
∂y

)
dx ∧ dy.

So, a vector field in R2 is Hamiltonian if and only if it has zero divergence

div v =
∂vx
∂x

+
∂vy
∂y

.

In particular, any divergence-free (=area-preserving) vector field in R2 automatically has a first integral,
namely the Hamiltonian function. For more complicated surfaces this does not have to be so, as shown
by the following example. Consider the torus T 2 with coordinates φ, ψ, defined modulo 2π. Then the
vector field {

φ̇ = 1,

ψ̇ = α,

where α is constant, has zero divergence and thus preserves the area form dφ ∧ dψ. However, if α is
irrational, then this vector field does not have any first integrals. Indeed, consider the trajectory of this
vector field (i.e. a solution of the above system of ODEs) with initial condition φ = 0, ψ = 0. It is
explicitly given by {

φ(t) = t mod 2π,

ψ(t) = αt mod 2π.

Consider also the circle φ = c. The above trajectory intersects this circle when t = c + 2πk. The
corresponding values of ψ are α(c+ 2πk) = αc+ 2απk, which means that consecutive intersection points
are obtained from each other by means of a rotation with the angle 2απ. This angle is not a rational
multiple of π, so the intersection points are dense in the circle φ = c (see Lecture 3). But since our
trajectory has a dense intersection with every circle φ = c, and the union of such circles is the whole
torus, it follows that the trajectory is dense in the torus. So, any continuos function which is constant
along the trajectory must be constant on the whole torus. But that means that there are no non-constant
first integrals, as desired.

The trajectories of the above vector field are known as irrational windings of the torus. One can
similarly show that each trajectory is dense. This can be also derived from the fact that rotations
(translations) of the torus take trajectories to trajectories, because the vector field defining the irrational
winding commutes (has zero Lie bracket) with ∂/∂φ and ∂/∂ψ.
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Example 15.8. Our next example is natural mechanical systems. A mechanical system is called natural
if all exterior forces are potential. An example is a motion of an object under gravity.

The configuration space M of a mechanical system is the space of all its possible positions, endowed
with the topology given by the natural notion of “closeness” of two positions. This topology can be
rigorously defined as the initial topology with respect to the maps φi : M → R3 which compute the
position of the i’th particle of the system for a given position of the whole system. In more down-to-earth
terms, if a mechanical system consists of n particles, then to each configuration we can assign a point
in R3n whose coordinates are positions of all the n particles. The configuration space is then defined as
the subset of R3n defined by the constraints on the positions of particles. Furthermore, one can extend
this definition to the case of infinitely many particles and describe the configuration space of a system
as a subset of an infinite-dimensional space. However, this does not seem to be a good definition from a
practical point of view. In practice, it is not necessary to consider positions of all particles of the system
to describe the configuration space. It is sufficient to consider a subset of particles with the property
that their positions uniquely determine the position of the whole system. As an example, consider the
pendulum, i.e. a rigid rod fixed at one of its ends. Although it consists of infinitely many particles, its
position is uniquely described by the position of its free endpoint. So, the configuration space is the space
of positions of that point, subject to a constraint: the distance from the free end to the immovable end
is fixed. This constraint describes either a circle (if the pendulum can only move in two dimensions) or
a sphere (three-dimensional, or spherical pendulum). So, the configuration space of the pendulum is a
circle, while the configuration space of the spherical pendulum is the sphere S2.

In good examples, the configuration space M is a manifold. Its dimension is called the number of
degrees of freedom of the system. It can be thought of as a number of parameters needed to specify a
position of the system. Any motion of a system is described by a curve in its configuration space. An
infinitesimal motion is thus a tangent vector to M . The space al all tangent vectors, i.e. the tangent
bundle TM of the configuration manifold M , is called the phase space. Each infinitesimal motion v ∈ TM
of the system determines the velocity of each individual particle. These velocities can be computed by
applying the differentials of the above “position calculating” maps φi to v. Since the differential is a linear
map, the velocity of each particle is a linear function of the velocity v ∈ TM of the system.

The kinetic energy of the system is defined by

K =
1

2

∑
miv

2
i ,

where the sum is taken over all particles, mi is the mass of the i’th particle, and vi is its velocity. In the
case of infinitely many particles, this is replaced by the integral

K =
1

2

∫
v2dm.

Since the velocity of each particle is a linear function of the velocity v of the system, K can be viewed
as a quadratic form on tangent vectors to M . It is positive definite, so it defines an inner product on
each tangent space. It also depends smoothly on the point in M . In other words, the kinetic energy is a
Riemannian metric on the configuration space.

For convenience purposes, as a Riemannian metric on M we take twice the kinetic energy:

〈v, v〉 = 2K(v).

This metric defines a map from the tangent bundle TM to the cotangent bundle T ∗M given by v 7→ 〈v, ∗〉.
This mapping is a particular case of a Legendre transform in mechanics. The image of the velocity v
under the Legendre transform is denoted by p and is called the momentum. The space of momenta is

40



the cotangent bundle T ∗M . Since it is identified with TM by means of the Legendre transform, it is also
called the phase space (sometimes only T ∗M , but not TM , is called the phase space).

We also have the potential energy function U on M , defined by summing up (or integrating) the
potential over all particles. The total energy of the system is H = K +U . It is a function on the tangent
bundle TM . We can also transport this function to the cotangent bundle using the Legendre transform.
The resulting function, also denoted H, is given by

H =
1

2
〈p, p〉+ U(q).

Here p ∈ T ∗qM . The inner product 〈p, p〉 on momenta is defined by inverting the inner product on velocities
(i.e. inverting the corresponding map TM → T ∗M and interpreting the resulting map T ∗M → TM as
a bilinear form on cotangent vectors). The physical meaning of this function is still total energy, but
expressed in terms of momenta.

Theorem 15.9. The motion of a natural mechanical system is described by a Hamiltonian vector field
on the phase T ∗M . The corresponding Hamiltonian function is the total energy H, while the symplectic
structure is the canonical symplectic structure on the cotangent bundle.

For the motion of a single particle in Rn, we derived this result in Lecture 11.

Example 15.10. One more class of examples of Hamiltonian systems is provided by geodesic flows. Let
M be a Riemannian manifold, i.e. a manifold endowed with an inner product on each tangent space
which depends smoothly on the point. Then one can define the length of a curve γ(t), t1 ≤ t ≤ t2 on M
by ∫ t2

t1

√
〈γ′(t), γ′(t)〉dt.

The length of a curve clearly does not depend on a parametrization.
Geodesics on M are defined as curves γ(t) with the following property: for any real numbers t1, t2

sufficiently close to each other, the arc of γ(t) corresponding to t1 ≤ t ≤ t2 is the shortest curve joining the
points γ(t1), γ(t2). For example, geodesics in R2 are straight lines, while geodesics on the sphere S2 are
great circles, i.e. sections of the sphere by 2-planes passing through its center. Note that this definition of
geodesics does not assume any specific parametrization. A more precise definition of geodesics includes an
additional requirement 〈γ′(t), γ′(t)〉 = const, i.e. the velocity vector of the curve has constant magnitude.
For surfaces in Rn (with Riemannian metric induced by the inner product in the ambient space), geodesics
can be alternatively defined as curves whose acceleration γ′′(t) is orthogonal to the surface.

Geodesics are described by a second order differential equation on M , i.e. a vector field on the tangent
bundle TM . However, it turns out to be more convenient to write the geodesic equation on the cotangent
bundle T ∗M . To that end, one identifies the tangent and cotangent bundles using the Riemannian metric
(which is the same as the Legendre transform in Example 15.8). This gives a vector field on T ∗M , known
as the geodesic flow (this term may also refer to the flow of that vector field).

Theorem 15.11. The geodesic flow is a Hamiltonian vector field on T ∗M . The corresponding Hamilto-
nian function is the “kinetic energy”

K =
1

2
〈p, p〉,

while the symplectic structure is the canonical symplectic structure on the cotangent bundle.

As in the previous example, the inner product 〈p, p〉 on momenta is defined by inverting the inner
product on velocities.
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By comparing this with the previous example, we see that the motion of any free mechanical system
(which means no external forces) is given by geodesics on the configuration space. The corresponding
metric is twice the kinetic energy of the system. For example, the spherical pendulum with no gravity
moves along great circles (the kinetic energy of the pendulum coincides, up to a constant factor, with the
standard metric on the sphere; this is because both of these metrics are rotationally invariant). Thus,
free physical systems have a geometric interpretation. Conversely, geodesics on a surface embedded in
the Euclidian space has a physical interpretation: they are trajectories of a particle that is constrained to
a given surface. This in particular follows from the definition of geodesics as curves whose acceleration is
orthogonal to the surface. Indeed, if a particle is moving freely on the surface, then the only force acting
on it is the reaction force which is orthogonal to the surface. So, by Newton’s second law, the acceleration
is orthogonal to the surface as well, which means that trajectories of the particle are indeed geodesics
(and the other way around).

Lecture 16: Poisson brackets

Definition 16.1. Let M be a symplectic manifold with symplectic form ω. The Poisson bracket of two
smooth function f, g on M is a smooth function {f, g} defined by6

{f, g} = −ω(Xf , Xg).

Using that the 1-form ω(Xf , . . . ) is, by definition of Xf , equal to df , we can rewrite the formula for
the Poisson bracket as

{f, g} = −ω(Xf , Xg) = ω(Xg, Xf ) = dg(Xf ) = LXf g.

Also, we have
dg(Xf ) = dg(ω−1(df)) = ω−1(df, dg),

where in the latter formula ω−1 is interpreted as a form on cotangent vectors. This form is known as the
Poisson tensor. We will denote it by π. To summarize, we have the following equivalent definitions of the
Poisson bracket:

{f, g} = −ω(Xf , Xg) = LXf g = ω−1(df, dg).

The formula {f, g} = LXf g provides an alternative formulation of Hamiltonian dynamics: the evolution
of any smooth function g along the flow of Xf is given by

dg

dt
= {f, g}.

Here the derivative in the left hand side is the derivative along the trajectories of Xf , i.e. it is the time
derivative of the function g(x(t)), where the point x(t) moves along the vector field Xf . In particular, we
have the following.

Proposition 16.2. A function g is a first integral of the Hamiltonian system Xf (i.e. constant along
trajectories of Xf ) if and only if {f, g} = 0.

When functions f, g satisfy {f, g} = 0, one says that they are in involution.

We now describe algebraic properties of Poisson brackets.

Proposition 16.3. The Poisson bracket operation on a symplectic manifold has the following properties:

6Note that some authors define the Poisson bracket with an opposite sign
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1. It is skew-symmetric, i.e. {g, f} = −{f, g}.

2. It is bilinear over real numbers. For example, linearity in the first argument means that {af+bg, h} =
a{f, h}+ b{g, h}, where f, g, h are functions, and a, b are real numbers.

3. It satisfies the product rule in both arguments, e.g. {fg, h} = f{g, h}+ g{f, h}.

4. It satisfies the Jacobi identity

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0. (27)

Proof. The only property that does not follow right from the definition is the Jacobi identity. To prove
the latter, we first rewrite it, using skew-symmetry, as

{{f, g}, h} = {f, {g, h}} − {g, {f, h}}.

Using the property {f, g} = LXf g, this can be further rewritten as

LX{f,g}h = LXfLXgh− LXgLXfh.

But
LXfLXgh− LXgLXfh = L[Xf ,Xg ]h,

so the Jacobi identity rewrites as
X{f,g} = [Xf , Xg]. (28)

To prove this identity, we will use the product rule for the Lie derivative: for any vector fields v, w and
any k-form ξ we have

Lv(ξ(w)) = (Lvξ)(w) + ξ(Lvw),

where ξ(w) = iwα. Using that Lvw = [v, w], this can also be written as

Lviw = iwLv + i[v,w], (29)

where both sides should be understood as operations on differential forms. Expressing i[v,w], we also find
that

i[v,w] = Lviw − iwLv,

which is sometimes abbreviated as
i[v,w] = [Lv, iw].

This product rule follows from the product rule for the usual derivative, because the Lie derivative is
defined as the time derivative of φ∗t (. . . ).

Using (29), we find that
i[Xf ,Xg ]ω = LXf iXgω − iXgLXfω.

But since Hamiltonian vector fields preserve the symplectic form, we have LXfω = 0, so

i[Xf ,Xg ]ω = LXf iXgω = LXfdg = diXfdg = d(LXf g) = d{f, g},

which is equivalent to (28). Thus, (28) and the Jacobi identity are proved.

Corollary 16.4. If g, h are first integrals of Xf , then so is their Poisson bracket {g, h}.
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Proof. Since g and h are first integrals, we have {f, g} = 0 and {f, h} = 0, so the first and the last term
on the left hand side of (27) vanish. Therefore, the second term also vanishes, i.e. {{g, h}, f} = 0, which
is equivalent to saying that {g, h} is a first integral of Xf .

Corollary 16.5. If g is a first integral of Xf , then Xg is a symmetry of Xf , i.e. [Xf , Xg] = 0.

Proof. Indeed, from (28) we have that [Xf , Xg] = 0 whenever {f, g} = 0.

Lecture 17: Liouville integrable systems on symplectic manifolds

Definition 17.1 (Continuous time Liouville integrable system). Let XH be a Hamiltonian vector field
on a 2n-dimensional symplectic manifold (M,ω). Then XH is called completely integrable (or Liouville
integrable, or just integrable) if it has n = 1

2 dimM first integrals F1, . . . , Fn which are:

1. Functionally independent, which means that the differentials dF1, . . . , dFn are linearly independent
almost everywhere on M .

2. In involution, i.e. {Fi, Fj} = 0 for all i, j = 1, . . . , n.

Let us comment on these conditions. First of all, since the Hamiltonian H itself is a first integral of
XH , one can always assume that F1 = H. If this is the case, then the condition {F1, Fi} = 0 is satisfied
automatically. In particular, the {Fi, Fj} = 0 condition is vacuous for 2n ≤ 4. If 2n ≥ 6, then this
condition becomes non-trivial and it is equivalent to requiring that each of the functions F1, . . . , Fn is a
first integral for each of the Hamiltonian vector fields XF1 , . . . , XFn .

The condition that the differentials of F1, . . . , Fn are generically independent roughly speaking means
that none of the Fi’s can be expressed as a function of the other ones. Indeed, if, say, F1 = G(F2, . . . , Fn),
then

dF1 =

n∑
i=2

∂G

∂xi
(F2, . . . , Fn)dFi,

so the differentials of F1, . . . , Fn are linearly dependent. Conversely, it is not hard to show that linear
dependence of differentials implies that one of the Fi’s can be locally expressed as a function of the other
ones.

One can also reformulate the functional independence condition in terms of the moment map, that is
the map F : M → Rn given by F (x) = (F1(x), . . . , Fn(x)). Clearly, the differentials of F1, . . . , Fn are lin-
early independent if and only if the differential of the moment map has maximal rank. So, dF1, . . . , dFn are
linearly independent almost everywhere on M if and only if the moment map is generically a submersion.
In particular, generic level sets of the moment map of an integrable system on M are half-dimensional
submanifolds of M .

Finally, notice that since dF1, . . . , dFn are linearly independent almost everywhere, the same is true for
the Hamiltonian vector fields XF1 , . . . , XFn . Furthermore, ω(XFi , XFj ) = −{Fi, Fj} = 0, so XF1 , . . . , XFn

span an isotropic subspace in every tangent space of M . At generic points this subspace has dimension
n = 1

2 dimM and is, therefore, a Lagrangian (=maximal isotropic) subspace. This in particular means
that n = 1

2 dimM is the maximal number of independent first integrals in involution. Indeed, if we had
more, then their Hamiltonian vector fields would span an isotropic subspace of dimension > 1

2 dimM ,
which is not possible. So, completely integrable systems are, in a sense, “maximally integrable”: they
have a maximal possible number of first integrals in involution. There do exist systems which have more
integrals, but in this case some of the integrals must have non-zero pairwise Poisson brackets. Such
systems are known as superintegrable, or degenerately integrable (we will discuss a precise definition later
on).
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In the discrete setting, the definition of Liouville integrability is the same, with a map T instead of a
vector field XH . The Hamiltonian property of XH is replaced by the assumption that the map T preserves
the symplectic structure: T ∗ω = ω. This is indeed a natural analog of the Hamiltonian property, because,
as we know, Hamiltonian vector fields can be viewed as infinitesimal symplectic diffeomorphisms, and,
conversely, any vector field whose flow preserves the symplectic structure is locally Hamiltonian.

Definition 17.2 (Discrete time Liouville integrable system). Let T : M → M be a symplectic diffeo-
morphism of a 2n-dimensional symplectic manifold (M,ω) (i.e. T ∗ω = ω). Then T is called completely
integrable (or Liouville integrable, or just integrable) if it has n = 1

2 dimM functionally independent first
integrals F1, . . . , Fn in involution.

This definition in particular means that to every discrete time integrable system one can associate
a continuous time system: as a Hamiltonian of such a system, one can take any of the integrals Fi.
Conversely, one can obtain a discrete integrable system out of a continuous one by taking the time 1 shift
along the trajectories of XH .

Also note that while any continuous time Hamiltonian system on a 2D manifold is automatically
integrable (because the Hamiltonian function is a first integral), there is no reason for the corresponding
statement in the discrete setting to be true. In other words, an area-preserving map of a surface to itself
does not have to be integrable.

The main structural result about integrable systems is the Arnold-Liouville theorem. We state it
simultaneously in the continuous and discrete settings. The continuous version is by now considered a
classical result, while the discrete version is relatively recent and belongs to A. Veselov [20].

Theorem 17.3 (Arnold-Liouville theorem). Consider a continuous or discrete time integrable system on a
2n-dimensional symplectic manifold (M,ω). Let F1, . . . , Fn be its independent first integrals in involution,
and let F = (F1, . . . , Fn) be the corresponding moment map. Consider a level set Mc = F−1(c) of the
moment map (i.e. a joint level set {x ∈ M | Fi(x) = ci}), and assume that Mc is regular (i.e. dF has
maximal rank on Mc), compact, and connected. Then:

1. The submanifold Mc is diffeomorphic to an n-dimensional torus.

2. The dynamics on Mc is quasi-periodic. In other words, there exist 2π-periodic coordinates φ1, . . . , φn
on the torus Mc such that the continuous dynamics on Mc is given by

φ̇i = ki,

while the discrete dynamics is given by

φi 7→ φi + li.

3. The restriction of the symplectic structure ω to Mc vanishes (half-dimensional submanifolds with
this property are called Lagrangian submanifolds; a submanifold is Lagrangian if and only if its
tangent space at every point is Lagrangian). Furthermore, one can choose the angle coordinates
φ1, . . . , φn on the torus Mc as well as on nearby level sets, and also choose new first integrals
si = si(F1, . . . , Fn) such that

ω =
n∑
i=1

dsi ∧ dφi.

The variables si are known as action variables, while φi’s are angle variables. Together they
are called action-angle variables.
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4. The dynamics on Mc (i.e. the integral trajectories in the continuous case and iterates of the map
in the discrete case) can be explicitly described by quadratures.

The connectedness assumption of the theorem is not crucial. If the level set Mc is disconnected, then
each of the connected components of Mc is a torus, while the rest of the theorem stays intact. In the
discrete setting one needs an additional assumption that each connected component is invariant under the
map T , otherwise one cannot restrict the map to Mc. In any case, this assumption is always satisfied for
a sufficiently high power of T . The compactness assumption can also be weakened, as we will se further.

As a corollary of the Arnold-Liouville theorem, the phase space of an integrable system (i.e. the
symplectic manifold where the system is defined) is almost everywhere foliated by Lagrangian tori, and
the dynamics on these tori is quasi-periodic.

Exercises.

1. Let f , g be two functions in R2 such that df and dg are linearly dependent at every point. Show
that there exists an open subset U ⊂ R2 in which either f is a function of g, or g is a function of f .

2. Let φ̇i = ki be a vector field on a torus. Prove that the trajectories of this vector field are periodic
if and only if the vector k = (k1, . . . , kn) can be expressed as k = λz, where λ ∈ R, and z ∈ Zn is a
vector with integer components.

3. What is the condition on li’s under which the map φi 7→ φi + li of the torus to itself has periodic
orbits?

4. Let si be one of the action variables. Prove that the trajectories of the vector fieldXsi are 2π-periodic
(hint: compute the Poisson bracket {si, φj}).

5. Assume that Mc is compact but possibly disconnected. Prove that in the discrete case there exists
k > 0 such that T k maps every connected component of Mc to itself.

Lecture 18: Proof of the first part of the Arnold-Liouville theorem:
topology

In this lecture we will prove the topological part of the Arnold-Liouville theorem, namely that a compact
connected regular joint level set Mc of n functions F1, . . . , Fn in involution on a 2n-dimensional symplectic
manifold M is diffeomorphic to a n-dimensional torus. First of all, it is clear that Mc is indeed a smooth
n-dimensional submanifold of M , because it is a regular joint level set of n smooth functions. What is
non-trivial is that this submanifold is diffeomorphic to a torus. To prove that, observe the following:

1. Regularity of Mc means that the differentials dF1, . . . , dFn are linearly independent at every point
of Mc. Therefore, the vector fields XFi = ω−1dFi are also linearly independent at every point of
Mc.

2. We have LXFiFj = {Fi, Fj} = 0, so every vector field XFi preserves the functions F1, . . . , Fn and
thus restricts (i.e. is tangent) to the joint level set Mc of those functions.

3. [XFi , XFj ] = X{Fi,Fj} = 0, i.e. the vector fields XFi commute.

Thus, Mc is a compact connected n-dimensional manifold that admits n pairwise commuting vector fields
XF1 , . . . , XFn that are linearly independent at every point. We will show that any manifold with this
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property is a torus. To that end, denote by φ
(i)
ti

the time ti shift along the trajectories of the vector field
XFi . Further, for any t = (t1, . . . , tn) ∈ Rn let

φt = φ
(1)
t1
◦ · · · ◦ φ(n)tn .

Then, for every t ∈ Rn, the mapping φt is a diffeomorphism of Mc to itself. Furthermore, the diffeomor-
phism corresponding to t+ s is a composition of diffeomorphisms corresponding to s and t:

φs+t = φs ◦ φt. (30)

In other words, φt defines an action of the group Rn on the manifold Mc. To prove (30) one uses that the
flows of the vector fields XFi commute with each other:

φs+t = φ
(1)
s1+t1

◦· · ·◦φ(n)sn+tn = (φ(1)s1 ◦φ
(1)
t1

)◦· · ·◦(φ(n)sn ◦φ
(n)
tn ) = (φ(1)s1 ◦· · ·◦φ

(n)
sn )◦(φ

(1)
t1
◦· · ·◦φ(n)tn ) = φs ◦φt.

Further, observe that the action φt has the following properties:

1. It is transitive, i.e. for any x1, x2 ∈ Mc there exists t ∈ Rn such that φt(x1) = x2. In other words,
the action φt has only one orbit. To prove that, it suffices to show that every orbit is open. Since
Mc is connected and orbits are disjoint, it then follows that there can be only one orbit. To prove
that every orbit is open, pick x0 ∈ Mc. Its orbit is the set {φt(x0) | t ∈ Rn}. This set is the image
of the map Rn → Mc given by t 7→ φt(x0). Let us show that this map is open. Moreover, it is a
local diffeomorphism. To prove that, we compute the differential of the map:

∂

∂ti
φt(x0) =

∂

∂ti
(φ

(1)
t1
◦ · · · ◦ φ(n)tn )(x0).

Using that the flows of XFi ’s commute, the latter expression can be rewritten as

∂

∂ti
φ
(i)
ti

((φ
(1)
t1
◦ . . . φ(i−1)ti−1

◦ φ(i+1)
ti+1

◦ · · · ◦ φ(n)tn )(x0)),

which, by definition of the flow, is equal to

XFi(φ
(i)
ti

((φ
(1)
t1
◦ . . . φ(i−1)ti−1

◦ φ(i+1)
ti+1

◦ · · · ◦ φ(n)tn )(x0))) = XFi(φt(x0)).

So, the differential of the map t 7→ φt(x0) takes the vector ∂/∂ti to the vector XFi(φt(x0)), and
using that XFi ’s are linearly independent at every point we conclude that the differential of our map
takes a basis in the tangent space to a basis in the tangent space and hence is an isomorphism. But
this exactly means that our map is a local diffeomorphism and hence an open map, as desired.

2. The stabilizer of every point x0 ∈ Mc is a discrete subgroup Γ ⊂ Rn (note that since the action is
transitive and Rn is an Abelian group, the stabilizers of all points in Mc are actually the same).
Indeed, we already saw that the map Rn → Mc given by t 7→ φt(x0) is a local diffeomorphism.
In particular, it maps a neighborhood of 0 ∈ Rn bijectively to a neighborhood of x0 ∈ Mc, which
means that 0 ∈ Rn is an isolated point in the stabilizer Γ of x0. But any subgroup Γ ⊂ Rn such
that 0 is an isolated point of Γ must be discrete. Indeed, if Γ is not discrete, then there exists a
Cauchy sequence vk ∈ Γ. But then vk+1− vk is a sequence of elements of Γ which tends to 0, which
contradicts 0 being an isolated point.

Since Rn acts on Mc transitively with stabilizer Γ, we can conclude that Mc is diffeomorphic to the quotient
Rn /Γ. This can be thought of a as a geometric version of the orbit-stabilizer theorem. We will not discuss
the precise conditions of this theorem here (in the next lecture we will construct a diffeomorphism from
Mc to the torus explicitly, so we can in fact avoid using this general theorem). It now remains to describe
the discrete subgroup Γ. To that end, we will use the following classification of discrete subgroups of Rn:
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Theorem 18.1. Any discrete subgroup Γ ⊂ Rn is a lattice, i.e. a set of integral linear combinations of
m ≤ n linearly independent vectors v1, . . . , vm ∈ Rn.

Proof. We will prove this theorem for n = 1, while the general case can be found e.g. in [2, Section 49].
Let Γ be a discrete subgroup of R. If Γ = {0}, then the statement of the theorem holds trivially. So, we
can assume that Γ contains a non-zero element. Therefore, Γ also contains a positive element (because
it is a subgroup and thus always contains −x along with x). Let v be the minimal positive element in
Γ (such an element exists since Γ is discrete and thus any it subset, in particular the subset of positive
elements, is closed). Then any other element w ∈ Γ must be of the form mv, where m ∈ Z is an integer.
Indeed, take any w ∈ Γ. Dividing it by v, we can represent it as w = mv + r, where m ∈ Z, and r is a
real number such that 0 ≤ r < v. Since Γ is a subgroup, we have r = w −mv ∈ Γ. But r is less than v
and thus cannot be positive, so r = 0, which proves that every element of Γ is indeed an integer multiple
of v. On other hand, since v ∈ Γ, all integer multiples of v are also in Γ, so Γ is a lattice spanned by v,
as desired.

So, the stabilizer of our Rn action on Mc is a lattice Γ spanned (over Z) by some linearly independent
vectors v1, . . . , vm ∈ Rn. Performing a change of basis, we can assume that vi is the i’th basis vector.
Thus, Γ coincides with the subgroup Zm ⊂ Rn which consists of points whose first m coordinates are
integers. To compute the quotient Rn /Zm, notice that the i’th copy of Z in Zm acts only on the i’th
copy of R in Rn, so

Rn /Zm ' (R /Z)m × Rn−m ' Tm × Rn−m.

Therefore, Mc is diffeomorphic to a product of an m-dimensional torus and an (n−m)-dimensional vector
space. But since Mc is compact, it follows that m = n (i.e. Γ is a full rank lattice), and M ' Tn, as
desired.

Remark 18.2. If Mc is regular and compact but not connected, then the same argument shows that
each connected component of Mc is still diffeomorphic to an n-dimensional torus. Furthermore, if Mc is
not compact, then the above argument shows that every connected component of Mc is diffeomorphic
to a product of the form Tm × Rn−m, provided that all the vector fields XFi are complete (i.e. their
integral trajectories are defined for all times). This completeness assumption is very important: if it is
not satisfied, then Mc may have quite intricate topology. For this reason, the completeness assumption is
sometimes included in the definition of an integrable system. There are, however, natural examples when
there is no completeness but one can still understand the topology of Mc by using algebraic (=complex
geometric) approach to integrability instead of the symplectic one.

Lecture 19: Proof of the second part of the Arnold-Liouville theorem:
dynamics

In the previous lecture we proved that a compact connected regular joint level set Mc of n functions
F1, . . . , Fn in involution on a 2n-dimensional symplectic manifold M is diffeomorphic to a n-dimensional
torus. In this section, we will prove that each of the vector fields XFi , in particular the vector field XH ,
where H = F1, is linear on that torus, in appropriate coordinates. We will also prove that the discrete
part of the Arnold-Liouville theorem: if there is a symplectic map T preserving F1, . . . , Fn, then the
restriction of this map to the torus Mc is a shift. To prove those statements, we make the identification
between Mc and the torus Tn constructed in the previous lecture more explicit.

Recall that we have a map Rn →Mc given by

(t1, . . . , tn) 7→ φ
(1)
t1
◦ · · · ◦ φ(n)tn (x0),
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where φ
(i)
ti

is the time ti shift along the trajectories of the vector field XFi , and x0 is an arbitrary point
in Mc. Denote this map by φ. Recall that the map φ is a surjective local diffeomorphism. Furthermore,
φ(t) = φ(t′) if and only if t − t′ ∈ Γ, where Γ is a full rank lattice in Rn, i.e. the set of integer linear
combinations of some n linear independent vectors. Consider the linear map ψ : Rn → Rn which takes
the vectors 2πei, where e1, . . . , en is the standard basis in Rn, to the basis vectors of the lattice Γ. Then
the composite map φ◦ψ : Rn →Mc is a surjective local diffeomorphism. Furthermore, φ◦ψ(t) = φ◦ψ(t′)
if and only if the coordinates of the vector t − t′ are integer multiples of 2π. Therefore, the map φ ◦ ψ
descends to a global diffeomorphism Rn/2πZn → Mc. So, we once again see that Mc is diffeomorphic to
the n-dimensional torus Rn/2πZn = Tn. We will now show that vector fields XFi are constant in standard
coordinates φ1, . . . , φn on Tn, coming from Cartesian coordinates in Rn. To prove that, it suffices to show
that the pull-back of XFi to Rn by means of the map φ ◦ ψ is a constant vector field. For the map φ, we
already saw that in the previous lecture: XFi is the φ-pushforward of the coordinate vector field ∂/∂ti.
But then it follows that the pull-back of XFi by φ ◦ ψ is constant as well, because ψ is a linear map and
hence takes constant vector fields to constant vector fields. This ends the proof of the dynamical part of
the Arnold-Liouville theorem in the continuos case.

In the discrete case, we have all of the above, plus a symplectic map T which preserves F1, . . . , Fn
and thus restricts to Mc. Furthermore, since T preserves both the symplectic structure and the functions
F1, . . . , Fn, it also preserves the symplectic gradients XFi = ω−1dFi of those functions. So, we have a
map of the torus Mc to itself which preserves n linearly independent constant vector fields XFi . We claim
that any map with this property is a translation. Indeed, the vector fields XFi are of the form

XFi =
∑
j

kij
∂

∂φj
,

where kij ’s are constant. Since XFi ’s are linearly independent, the matrix kij is invertible, so there exists
another matrix lij such that

∂

∂φi
=
∑
j

lijXFj .

In other words, XFi ’s and ∂/∂φi’s are just two different bases in the n-dimensional vector space of constant
vector fields on the torus. And since the map T preserves the basis of XFi ’s, it also preserves ∂/∂φi’s (as
well as any other constant vector field). But this means that T commutes with the flow of ∂/∂φi, which
is the translation in the direction φi. So, T commutes with all translations of the torus. Therefore,

T (φ1, . . . , φn) = T (0, . . . , 0) + (φ1, . . . , φn),

which means that T is a translation by T (0, . . . , 0). Thus, the dynamical part of the Arnold-Liouville
theorem is proved in the discrete case as well.

We skip the proof of the last two parts of the Arnold-Liouville theorem (action-angle coordinates and
explicit solutions). Those proofs can be found e.g. in [2, Section 49].

Lecture 20: Noether’s principle, first examples of integrable systems

As we saw in the previous lectures, Hamiltonian systems with many conserved quantities exhibit nice
dynamical behavior. Now, we want to understand where such conserved quantities may come from.
The most natural from the physical perspective source of conserved quantities is symmetries. Noether’s
principle is mechanics says that any symmetry of a physical system gives rise to a conserved quantity.
The goal of this lecture is to make this statement precise, as well as to discuss some examples.
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There are two types of symmetries of physical systems: discrete and continuous. Discrete symmetries
do not lead to conserved quantities, but they are useful for understanding continuous ones, so we will
discuss the discrete case first.

Consider a natural mechanical system. Such a system is described by a configuration manifold M ,
along with a Riemannian metric on it (which is twice the kinetic energy), and a smooth function (the
potential). A discrete symmetry of such a system is a diffeomorphism φ : M → M which preserves the
metric (i.e. φ is an isometry) and the potential. Having such a symmetry φ, we define its cotangent lift
φ̂ by the pushforward

φ̂(p) = φ∗p

for any p ∈ T ∗M . It is easy to see that φ̂ is a diffeomorphism of the cotangent bundle T ∗M onto itself.

Exercise 20.1. For any diffeomorphism φ : M → M its cotangent lift φ̂ : T ∗M → T ∗M is a symplecto-
morphism, i.e. it preserves the canonical structure symplectic structure on the cotangent bundle.

Exercise 20.2. Consider a diffeomorphism R→ R given by a function f(q) with f ′(q) 6= 0. Describe its
cotangent lift and explicitly show that it preserves the symplectic form on the cotangent bundle.

Exercise 20.3. For any symmetry φ : M → M of a natural mechanical system on M its cotangent lift
φ̂ : T ∗M → T ∗M preserves the associated Hamiltonian function on T ∗M .

Thus, any symmetry of the configuration space preserving a natural mechanical system
gives rise to a transformation of the phase space preserving both the symplectic form and
the Hamiltonian.

We now turn our attention to continuous symmetries. Such a symmetry is given by a vector field v
on the configuration manifold M such that the Lie derivative of both the metric and the potential with
respect to v vanishes. This is equivalent to requiring that the flow φt of v consists of discrete symmetries
(see Proposition 13.8). Thus, for every t, the cotangent lift φ̂t is a symplectomorhism preserving the
Hamiltonian.

Exercise 20.4. Show that for any t1, t2 ∈ R we have φ̂t1+t2 = φ̂t1 ◦ φ̂t2 . Deduce that φ̂t is itself a flow of
the vector field v̂ on T ∗M given by

v̂ =
d

dt

∣∣∣∣
t=0

φ̂t.

The vector field v̂ is called the cotangent lift, or cotangent prolongation of v.

Exercise 20.5. Show that in coordinates the cotangent prolongation of a vector field

v =
∑
i

vi
∂

∂qi

is given by

v̂ =
∑
i

vi
∂

∂qi
−
∑
i,j

∂vj
∂qi

pj
∂

∂pi
. (31)

Since the flow φ̂t of the vector field v̂ consists of symplectic diffeomorphisms, the vector field v̂ is
symplectic, i.e. one has Lv̂ω = 0 for the canonical symplectic structure ω on the cotangent bundle.
Furthermore, the vector field v̂ is Hamiltonian. The corresponding Hamiltonian function is the vector
field v interpreted as a function on T ∗M . We denote this function by fv:

fv(p) = p(v) ∀ p ∈ T ∗M.
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In local coordinates, we have

fv =
∑
i

vipi.

Since the canonical symplectic structure is standard in (p, q) coordinates on T ∗M , we can compute the
associated Hamiltonian vector field as

q′i =
∂fv
∂pi

= vi,

p′i = − ∂fv
∂qi

= −
∑
i,j

∂vj
∂qi

pj
∂

∂pi
.

This agrees with formulas (31) for the cotangent prolongation. Thus, the cotangent prolongation v̂ of any
vector field v is indeed Hamiltonian, with the Hamiltonian function given by v itself (more precisely, the
Hamiltonian function is fv(p) = p(v), which is nothing else but v regarded as function on the cotangent
bundle). Assume further that v is a symmetry of a natural mechanical system on M . Then the cotangent
prolongation v̂ preserves the associated Hamiltonian function H, so

{fv, H} = LXfvH = Lv̂H = 0.

Thus, fv is a first integral for the Hamiltonian dynamics on T ∗M given by the Hamiltonian function H.
This is the Noether’s principle: every symmetry v gives rise to a conserved quantity, namely fv.

The fact that {fv, H} = 0 for a symmetry v can also se seen as follows. Given any contravariant
tensor T on M , i.e. a multilinear form on every cotangent space, we associate to it a function fT on T ∗M
given by

fT (p) = T (p, . . . , p).

This agrees with our earlier definition of fv for a vector field v. Furthermore, if T is a tensor of type
(0, 0), i.e. a function on M , then fT is simply the lift of T to the cotangent bundle.

Proposition 20.6. For any contravariant tensor T and any vector field v one has

{fv, fT } = fLvT .

Proof sketch. This identity is equivalent to

Lv̂fT = fLvT .

The latter is straightforward to verify when T is either a function or a vector field, using e.g. the coordinate
form (31) of the cotangent prolongation v̂. For an arbitrary tensor T , the necessary identity can be proved
by writing T as

T =
∑

Ti1...ik
∂

∂qi1
⊗ · · · ⊗ ∂

∂qik
and applying the product rule for the Lie derivative.

The Hamiltonian H of a natural system can be written as

H =
1

2
fg−1 + fU ,

where g−1 is the inverse of the metric, and U is the potential. Therefore, for a symmetry v we have

{fv, H} =
1

2
{fv, fg−1}+ {fv, fU} =

1

2
fLvg−1 + fLvU .

But since v is a symmetry, we have Lvg
−1 = 0 and LvU = 0, so {fv, H} = 0, as desired.

Another corollary of Proposition 20.6 is the following:
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Corollary 20.7. If v and w are commuting symmetries of a natural mechanical system, then the corre-
sponding conserved quantities Poisson commute.

Proof. We have
{fv, fw} = fLvw = f[v,w] = 0.

As an example of application of Noether’s principle, consider the motion of a particle in R2 in a
central force field. The corresponding configuration manifold is R2 with coordinates x, y, the metric is the
standard Euclidian metric, and the potential is a function U = U(x2 + y2). This system has a symmetry
given by rotations around the origin. The corresponding symmetry vector field is

v = x
∂

∂y
− y ∂

∂x
.

The associated function on the cotangent bundle is

fv = xpy − ypx.

It is known as the angular momentum. Since the system is invariant under rotations, the angular mo-
mentum Poisson-commutes with the Hamiltonian

H =
1

2
(p2x + p2y) + U(x2 + y2).

The identity {fv, H} = 0 is also easy to verify explicitly. Furthermore, it is easy to see that the Hamilto-
nian H and the angular momentum fv are functionally independent. This can be shown by an explicit
computation or using the following argument: the projections of the trajectories for the Hamiltonian
vector field Xfv = v̂ to the configuration space are circles centered at the origin. Indeed, by construction
those projections coincide with trajectories of v. If H and fv were functionally dependent, then the same
would be true for trajectories of XH . However, we know that a point in the plane can move in any
direction prescribed by initial velocity and does not, in general, move in circles around the origin.

Thus, the motion of a particle in R2 in a central force field is an example of an integrable system. The
level sets of the energy function H are compact provided that U(z) → ∞ as z → ∞. Thus, joint level
sets of H and fv are also compact, and one can apply the Arnold-Liouville theorem: generic joint level
sets are two-dimensional tori with quasi-periodic dynamics. For a generic potential and generic torus, the
dynamics is genuinely quasi-periodic: the trajectory fills the torus densely. The projection of such a torus
to the configuration space is a two-dimensional domain, filled densely by the trajectory. Thus, a generic
trajectory of a particle in R2 in a central force field densely fills a two-dimensional domain.

There is, however, an exceptional situation, corresponding to the potential U = 1
2(x2 + y2) (or,

more generally, any constant multiple of x2 + y2). The corresponding force field F = −gradU is linear:
F = −(x, y). Such force is known as Hooke’s force. To physically realize such a system one attaches the
particle to the origin by a spring.

In the Hooke’s case, the Hamiltonian is of the form

H =
1

2
(p2x + p2y + x2 + y2).

It can be separated into two parts, each of which depends either only on x or only on y:

H =
1

2
(p2x + x2) +

1

2
(p2y + y2).

Because of that, we have that H Poisson-commutes with its x part

Hx = p2x + x2,
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so Hx is an additional conserved quantity (same is true for Hy = p2y + y2 but Hy can be expressed in
terms of H and Hx). Thus, we have a Hamiltonian system on a 4-dimensional symplectic manifold with
3 > 2 independent conserved quantities (independence can be checked explicitly). Such systems where the
number of first integrals exceeds 1

2 dimM are known as superintegrable. Of course, the Poisson brackets
of H, fv, Hx cannot be all zero, because there is at most two independent functions on a 4-manifold with
vanishing Poisson brackets. Explicitly, one has

{fv, Hx} = {xpy − ypx, p2x + x2} = 2(pxpy + xy) 6= 0.

Remark 20.8. Note that the latter function is also a first integral, as Poisson brackets of first integrals.
It is however dependent with the ones we already have:

(pxpy + xy)2 = HxHy − f2v .

It is in fact impossible (for non-zero vector field) to have four independent integrals on a 4-manifold,
because in that case generic trajectories would be points.

A physical manifestation of superintegrability on 4-manifolds is closed trajectories. Indeed, joint level
sets of three independent integrals must be one-dimensional manifolds, so by compactness they are circles.
Therefore, the trajectories of the system are contained in circles and hence must be closed. In particular,
all generic trajectories of a particle in R2 attached to a spring are closed. One can further show that those
trajectories are ellipses centered at the origin (this should not be confused with gravitational potential
where bounded trajectories are ellipses which have the origin as one of the foci).

Lecture 21: Further examples of integrable systems

spherical pendulum, geodesics on the sphere and in R2, geodesics on ellipsoid, Chasles’ theorem...

Lecture 22: Introduction to Poisson manifolds

In this lecture we introduce the notion of a Poisson manifold. Recall that on every symplectic manifold
M we have a Poisson bracket operation on functions which has the following properties:

1. It is skew-symmetric, i.e. {g, f} = −{f, g}.

2. It is bilinear over real numbers. For example, linearity in the first argument means that {af+bg, h} =
a{f, h}+ b{g, h}, where f, g, h are functions, and a, b are real numbers.

3. It satisfies the product rule in both arguments, e.g. {fg, h} = f{g, h}+ g{f, h}.

4. It satisfies the Jacobi identity

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.

A Poisson manifold is a manifold endowed with an operation on functions satisfying exactly the same
properties. Such a manifold in general does not have to be symplectic. For example, any manifold (in
particular, an odd-dimensional manifold) endowed with a zero bracket is a Poisson manifold. But not
any manifold has a symplectic structure (for example, odd-dimensional manifolds do not admit such
structures).

We will now discuss what part of symplectic formalism can be developed for Poisson manifolds.
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Proposition 22.1. For any smooth function f on a Poisson manifold, there exists a unique vector field
Xf such that {f, g} = LXf g for any smooth function g.

Proof. It follows from the properties of the Poisson bracket that for fixed f the operation {f, ∗} is a dif-
ferentiation. But any differentiation of functions is a differentiation along a certain (uniquely determined)
vector field. Therefore, there exists a unique vector field Xf such that {f, g} = dg(Xf ), as desired.

As in the symplectic case, the vector field Xf is called the Hamiltonian vector field with the Hamil-
tonian function f .

Proposition 22.2. For any Poisson bracket, there exists a bivector field π (i.e. a skew-symmetric bilinear
form on cotangent vectors) such that {f, g} = π(df, dg).

Proof. From the definition of the vector field Xf and properties of the Poisson bracket it follows that
Xfg = fXg + gXf . Therefore, for any covector ξ ∈ T ∗xM , we have ξ(Xfg) = f(x)ξ(Xg) + g(x)ξ(Xf ).
So, the correspondence f 7→ ξ(Xf ) is, for fixed ξ, a differentiation at the point x. We know that any
such differentiation is determined by a tangent vector. Denote this tangent vector by vξ. Then we
have ξ(Xf ) = df(vξ). It is also clear from this formula that vξ linearly depends on the covector ξ,
i.e. we have a linear operator π̃ : T ∗xM → TxM such that vξ = π̃(ξ). Thus, ξ(Xf ) = π̃(ξ, df), where
in the latter formula π̃ is interpreted as a bilinear function on covectors. Further, taking ξ = dg, we
get that {f, g} = dg(Xf ) = π̃(dg, df). To complete the proof, it now remains to denote π = −π̃. Then
{f, g} = π(df, dg). Skew-symmetry of π follows from skew-symmetry of the Poisson bracket, while smooth
dependence on the point x can be seen e.g. from the formula πij = {xi, xj} for the components.

The bivector field π is called the Poisson tensor (or Poisson bivector). We just saw that any Poisson
bracket defines a Poisson bivector. The components of that bivector in coordinates are given by the
formula πij = {xi, xj}. Conversely, given a bivector π, we can construct a bracket using the formula
{f, g} = π(df, dg). This bracket is automatically bilinear, skew-symmetric, and satisfies the product rule
in both arguments. However, the Jacobi identity imposes additional restrictions on the tensor π.

Exercise 22.3. A Poisson bracket is uniquely determined by brackets of coordinate functions. A bracket
satisfies the Jacobi identity if and only if it is satisfied by coordinate functions.

Recall now that for symplectic manifolds the Poisson tensor π is the inverse of the symplectic structure.
Conversely, we can reconstruct the symplectic structure as the inverse of the Poisson structure. Thus,
a Poisson manifold is symplectic if and only if the Poisson tensor is invertible. The closedness of the
so-defined symplectic form can be deduced from the Jacobi identity for the Poisson structure.

Exercise 22.4. Show that the formulas

{x, y} = z, {y, z} = x, {z, x} = y.

define a Poisson structure in R3. Show that it does not correspond to any symplectic structure. Show
that the function x2 + y2 + z2 has a zero Poisson bracket with any other function. Such functions are
known as Casimir functions. Note that there are no such (non-zero) functions in the symplectic case.

Exercise 22.5. Let V be a vector space, and let π be a skew-symmetric bilinear form on V ∗. Show that
the formula {f, g} = π(df, dg) defines a Poisson bracket on V . Describe the corresponding Poisson tensor
and Casimir functions.

Exercise 22.6. A vector space g is called a Lie algebra if it is endowed with a bilinear skew-symmetric
operation [ , ] satisfying the Jacobi identity. Show that the formula {f, g}(x) = x([df(x), dg(x)]) defines
a Poisson bracket on the dual space g∗ of any Lie algebra. This bracket is known as the Lie-Poisson
bracket. Show that the Poisson bracket from Exercise 22.4 is the Lie-Poisson bracket corresponding to
the Lie algebra R3 with cross-product operation.
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Lecture 23: Symplectic leaves

In this lecture we will show that any Poisson manifold can be represented as a disjoint union of symplectic
manifolds, called symplectic leaves.

Recall that the Hamiltonian vector field corresponding to a smooth function f on a Poisson manifold
M is defined as the unique vector field Xf satisfying the identity

{f, g} = LXf g

for any smooth function g on M . This can be rewritten as

{f, g} = dg(Xf ). (32)

At the same time, we have
{f, g} = π(df, dg) = dg(π(df)), (33)

where in the latter formula we interpret the Poisson tensor π as a map from the cotangent space to
the tangent space. Comparing formulas (32) and (33), we see that the Hamiltonian vector field Xf is
explicitly given by

Xf = π(df). (34)

Recall that we have a similar definition of the Hamiltonian vector field Xf in the symplectic case: Xf =
ω−1(df). In the Poisson case, the Poisson tensor π plays the role of ω−1.

Exercise 23.1. For the Poisson bracket from Example 22.4, compute the Hamiltonian vector field with
Hamiltonian f = x.

From (34) it follows that for any function f the Hamiltonian vector field Xf belongs to the subspace
Imπ at every point x ∈ M : Xf (x) ∈ Imπ(x). In the symplectic case, this result is vacuous, because the
Poisson tensor is invertible and hence surjective. However, if the Poisson tensor π is degenerate, then the
result that we get is non-trivial: all Hamiltonian vector fields belong to a proper subspace of the tangent
space at every point.

Assume now for simplicity that the Poisson tensor π has constant rank k, i.e. the rank of π(x) is
k for all x ∈ M . Then Imπ(x) is a k-dimensional subspace of the tangent space TxM . A choice of a
k-dimensional subspace at every tangent space of a manifold is called a k-dimensional distribution (one
also needs to assume that the dependence of the subspace on the point is smooth). We are already
familiar with 1-dimensional distributions: those correspond to a choice of a direction in every tangent
space, i.e. 1-dimensional distributions are the same as direction fields. As follows from the existence
and uniqueness theorem for ODEs, for any direction field on a manifold M and any point x ∈ M there
exists an integral curve of the direction field through x, i.e. an unparametrized curve whose tangent
line at every point coincides with the 1-dimensional subspace given by the direction field. Similarly, for
k-dimensional distributions we would like to construct integral surfaces, i.e. surfaces whose tangent plane
at every point coincides with the plane determined by the distribution. A distribution is called integrable
if it admits an integral surface through every point. An integrable k-dimensional distribution gives rise to
a k-dimensional foliation, i.e. a partition of the ambient manifold into a disjoint union of k-dimensional
surfaces. Conversely, any foliation gives an integrable distribution: one just takes all tangent spaces of
surfaces forming the foliation.

It turns out that for k ≥ 2 a k-dimensional distribution does not have to be integrable. To see this,
observe that if v, w are vector fields belonging to an integrable distribution, then their commutator [v, w]
should also belong to the distribution. Indeed, since v, w belong to the distribution, they are tangent to
surfaces forming the corresponding foliation, and hence the same is true for their commutator.
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Exercise 23.2. Prove that there exists no surface in R3 which is orthogonal to the vector field v = (z, x, 0)
at every point. Hint: find two vector fields orthogonal to v whose commutator is not orthogonal to v.

A distribution is called involutive if the commutator of any two vector fields belonging to the dis-
tribution also belongs to the distribution. We see that an integrable distribution must be involutive.
Conversely, any involutive distribution is integrable: this is Frobenius’s theorem. There is also a
version of this result for singular distributions, i.e. distributions whose dimension vary with the point.
This is usually referred to as the Stefan-Sussmann theorem, see e.g. [10].

Exercise 23.3. Explain why there may exist at most one foliation tangent to a given distribution.

A curious manifestation of the Frobenius theorem is our ability to navigate a motor vehicle with just
two controls (steering and driving) in the four-dimensional configuration space (the four parameters are
x and y coordinates of the car, its orientation, and orientation of the front wheels). This is possible due
to the non-involutivity of the distribution spanned by the control vector fields, see [6, Section 2.6].

Exercise 23.4. Let v1, . . . , vk be vector fields belonging to a certain distribution L. Furthermore, assume
that foe very point x the vectors v1(x), . . . , vk(x) span L(x). Finally, assume that [vi, vj ] ∈ L for every
i, j. Prove that the distribution L is involutive.

Thanks to this result, it is sufficient to verify the involutivity condition only for basis vector fields of
the distribution. In our case, as such basis vector fields one can take Hamiltonan vector fields, as shown
b the following exercise:

Exercise 23.5. Assume that v is a vector field belonging to the distribution Imπ, where π is a Poisson
tensor. Then v can be locally expressed as a linear combination of Hamiltonian vector fields (with non-
constant coefficients).

Thus, to verify involutivity of the distribution Imπ it suffices to check that the commutator of Hamil-
tonian vector fields belongs to Imπ. But this follows from the formula

[Xf , Xg] = X{f,g},

which is established in the same way as in the symplectic case. So, by the Frobenius theorem the
distribution Imπ is integrable. In the case when the rank of the Poisson tensor is non-constant, we can
similarly apply the Stefan-Sussmann theorem (for that one needs to verify certain additional technical
conditions), or, alternatively, deduce integrability from Weinstein’s splitting theorem [21]. All in all, we
get that every Poisson manifold is foliated by submanifolds tangent to the distribution Imπ. These
submanifolds are called symplectic leaves.

Proposition 23.6. Every symplectic leaf has a canonical structure of a symplectic manifold. In particular,
every symplectic leaf (and thus the image of the Poisson tensor at every point) is even-dimensional.

Proof. Let L be a symplectic leaf. We will first show that L inherits a structure of a Poisson manifold.
Take two arbitrary smooth functions f and g on L and extend them to smooth functions f̃ and g̃ defined
in some open (in the ambient manifold M) neighborhood of L. Define the bracket of f and g by

{f, g} = {f̃ , g̃}.

We claim that this bracket does not depend on the choice of extensions. Indeed, suppose we change one
of the extensions, say, f̃ to f̂ . Then

{f̃ − f̂ , g̃} = π(d(f̃ − f̂), dg̃).

56



But the function f̃ − f̂ vanishes on L, so its differential at any point x ∈ L vanishes on the tangent
space TxL = Imπ(x). But since π is skew-symmetric, the annihilator of its image is its kernel. So,
d(f̃ − f̂) ∈ Kerπ, and {f̃ − f̂ , g̃} = 0, which proves that the bracket {f, g} is well-defined. Furthermore, it
satisfies all properties of a Poisson structure simply because it is defined using a Poisson structure on the
ambient manifold. So, it remains to show that the Poisson structure on L is non-degenerate and hence
gives rise to a symplectic structure. To that end, observe that

{f, g} = {f̃ , g̃} = dg̃(Xf̃ ).

But Xf̃ belongs to the tangent space of L, so dg̃(Xf̃ ) = dg(Xf̃ ), and the Hamiltonian vector filed Xf

(relative to the Poisson structure on L) coincides with the Hamiltonian vector field Xf̃ (relative to the
Poisson structure on the ambient manifold). Therefore,

Xf = πdf̃ ,

which means that the Poisson tensor π on M and the Poisson tensor πL on L are related by

π = πL ◦ r,

where r : T ∗xM → T ∗xL is the natural restriction map. So, since π is surjective (as a mapping on TxL =
Imπ(x)), πL is surjective as well, and hence an isomorphism, as desired.

Exercise 23.7. A mapping φ : M → N between Poisson manifolds is called a Poisson map if
{φ∗f, φ∗g}M = φ∗{f, g}N for any smooth functions f , g on N (here { , }M , { , }N are Poisson brack-
ets on M and N respectively). A submanifold M ⊂ N of a Poisson manifold N is called a Poisson
submanifold if the inclusion map i : M → N is Poisson. Prove that any symplectic leaf of a Poisson
manifold is a Poisson submanifold. Prove that a submanifold M ⊂ N is Poisson if and only if its tangent
space contains the image of the Poisson tensor (equivalently, if any Hamiltonian vector field on N is tan-
gent to M). Describe Poisson submanifolds of a symplectic manifold (those should not be confused with
symplectic submanifolds; a submanifold of a symplectic manifold is called symplectic if the restriction of
the symplectic structure to that submanifold is again symplectic).

Lecture 24: Symplectic leaves and Casimir functions

Recall that a function f on a Poisson manifold M is called a Casimir function if {f, g} = 0 for any other
smooth function g on M .

Proposition 24.1. A function is a Casimir if and only if it is constant on every symplectic leaf.

Proof. For any symplectic leaf L, we have

{f, g}|L = {f |L , g|L}L ,

where { , }L is the Poisson bracket on L induced by the bracket on the ambient manifold M . So, {f, g} = 0
if and only if

{f |L , g|L}L = 0

for any symplectic leaf L. Furthermore, since g is arbitrary, g|L is also an arbitrary function on L. So, f
is a Casimir if and only if its restriction to every symplectic leaf is a Casimir. But symplectic leaves are
symplectic and hence have no Casimirs except for constant functions. The result follows.

Here is yet another characterization of Casimir functions:
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Proposition 24.2. A smooth function f is a Casimir if and only if at every point we have πdf = 0,
where π is the Poisson tensor (interpreted as a map from the cotangent space to the tangent space).

Proof. We have {f, g} = π(df, dg), so f is a Casimir if and only if π(df, dg) = 0 for any smooth function g.
But any covector is a differential of a suitable smooth function, so f is a Casimir if and only if π(df, ξ) = 0
for an arbitrary covector ξ, which is equivalent to saying that πdf = 0.

Example 24.3. Let us find Casimir functions of the bracket from Example 22.4. The corresponding
Poisson tensor reads

π =

 0 z −y
−z 0 x
y −x 0

 .

The kernel of π at generic points is spanned by the covector xdx+ ydy+ zdz. Thus f is a Casimir if and
only if

df = λ(xdx+ ydy + zdz),

where λ is a scalar function. In particular, f = x2 + y2 + z2 is a Casimir, corresponding to λ = 2. We can
now use this information to describe the symplectic leaves. The level sets of the function f = x2 + y2 + z2

are concentric spheres x2 +y2 +z2 = a, and also the origin, which is a single-point level set. Since Casimir
functions are constant on symplectic leaves, symplectic leaves must be subsets of level sets of Casimir
functions. In particular, each of the spheres x2+y2+z2 = a, a > 0 is a disjoint union of symplectic leaves.
But since the rank of the Poisson tensor is equal to two away from the origin, it follows that symplectic
leaves contained in the sphere x2 + y2 + z2 = a are two-dimensional and thus coincide with the sphere
itself (a connected manifold cannot be represented as a disjoint union of several manifolds of the same
dimension). So, each of the spheres x2 + y2 + z2 = a, a > 0 is a two-dimensional symplectic leaf. The
union of such spheres is the whole space minus the origin, so the origin must be a zero-dimensional leaf.
This agrees with the fact that the rank of the Poisson tensor at the origin is zero.

From this description of symplectic leaves it also follows that any other Casimir is a function of
f = x2 + y2 + z2. Indeed, any function constant on spheres x2 + y2 + z2 = a must be a smooth function
of x2 + y2 + z2.

Exercise 24.4. Show that the symplectic form on the symplectic leaves x2 + y2 + z2 = a is proportional
to the standard area form on the sphere.

Example 24.5. Consider the following modification of the bracket from Example 22.4:

{x, y} = −z, {y, z} = x, {z, x} = y. (35)

Similarly to Example 24.3, we find that the function f = x2 + y2 − z2 is a Casimir. Its level sets
x2 + y2 − z2 = a are

• One-sheeted hyperboloids for a > 0.

• Two-sheeted hyperboloids for a < 0.

• A cone for a = 0.

Using the same argument as in Example 24.3, we conclude that one-sheeted hyperboloids, as well as
each of the two sheets of two-sheeted hyperboloids are symplectic leaves. As for the cone, it cannot be
a single leaf in particular because it is not a manifold. To represent it as a union of leaves, observe
that the Poisson bracket vanishes at the origin, so the origin is a zero-dimensional leaf. Furthermore,
removing the origin from the cone, we are left with a two-dimensional manifold, so the same argument as
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in Example 24.3 shows that each of the open halves of the cone, i.e. each of the sets x2+y2−z2 = 0, z > 0
and x2 + y2 − z2 = 0, z < 0 is a symplectic leaf. So, all in all, the cone is a union of three symplectic
leaves.

As in Example 24.3, it is not hard to show that any other Casimir of the bracket (35) is a function of
x2 + y2 − z2, at least locally. So, in both of the above examples there is essentially only one Casimir, in
the sense that any other Casimir is functionally dependent with the one that we found. More generally,
we have the following result:

Proposition 24.6. Assume that dim Kerπ = k almost everywhere on M (such a number k exists in all
reasonable example of Poisson brackets; in the above two examples, we have k = 1). Then π has at most
k functionally independent Casimirs.

Proof. Let f1, . . . , fl be functionally independent Casimirs. Then their differentials df1, . . . , dfl are linearly
independent almost everywhere in M . In particular, there is a point x ∈M such that dim Kerπ(x) = k,
and df1(x), . . . , dfl(x) are linearly independent. So, since dfi(x) ∈ Kerπ(x), it follows that l ≤ k, as
desired.

It turns out that locally this bound is exact: if dim Kerπ = k, then one can always find k functionally
independent local Casimirs:

Proposition 24.7. Assume that dim Kerπ = k in the neighborhood of a given point x ∈M . Then there
exist k functionally independent local Casimirs near x.

Proof sketch. Since dim Kerπ = k near x, all symplectic leaves close to x are submanifolds of the same
codimension k. Changing coordinates, we can assume that these submanifolds are planes, all parallel to
each other. Moreover, we can in fact arrange that these submanifolds are given by the equations xi = ci,
where i = 1, . . . , k, and c1, . . . , ck are constants (whose values depend on the choice of the leaf). Then
x1, . . . , xk are the sought local Casimirs.

Globally, this result does not need to hold, as shown by the following example:

Exercise 24.8. Consider the Poisson bracket in R3 given by {x, y} = 0, {z, x} = x, {z, y} = y. Show that
the corresponding Poisson tensor has a one-dimensional kernel at generic points, but there are no globally
defined Casimirs.

Lecture 25: Lie groups and Lie algebras

In this lecture we give a brief introduction to the theory of Lie groups and algebras. Details can be found
in any textbook on Lie theory, see e.g. [7, Chapter 1].

Recall that a group G is called a Lie group if G is smooth manifold, and the group operations in G,
i.e. multiplication and inversion, are smooth maps.

Example 25.1. The group GLn of invertible n × n matrices over real numbers is a Lie group of di-
mension n2. Indeed, GLn is a smooth manifold of dimension n2 because it is an open subset in the
n2-dimensional vector space of all n × n real matrices. Furthermore, the group operations are smooth
because their expression in terms of matrix entries is given by smooth functions, namely polynomial
(quadratic) functions for multiplication and rational functions for inversion.
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Example 25.2. The group On of n× n orthogonal matrices is a Lie group of dimension 1
2n(n− 1). To

prove this, it suffices to show that it is a submanifold of GLn of the indicated dimension (then the group
operations are automatically smooth as restrictions of smooth group operations in GLn). To prove the
latter, consider the map Φ from all n × n matrices to symmetric n × n matrices given by X 7→ XXt.
Then On can be described as the level set Φ−1(Id). To prove the smoothness of that level set it suffices
to show that Φ is a submersion at points X ∈ Φ−1(Id), i.e. that the differential of Φ is surjective. The
differential of Φ at X is given by

dXΦ(Y ) = Y Xt +XY t.

It is a linear map from all n×n matrices to symmetric n×n matrices. We need to show that this map is
surjective, i.e. that any symmetric matrix A can be written as Y Xt+XY t, where X is a fixed orthogonal
matrix, and Y is an arbitrary matrix. Such a representation of A can be found by solving the equation

Y Xt =
1

2
A.

Taking Y solving this equation we get that

Y Xt +XY t = Y Xt + (Y Xt)t =
1

2
A+

1

2
At = A,

as desired.

Example 25.3. The group SOn of n× n orthogonal matrices with determinant 1 is also a Lie group of
dimension 1

2n(n − 1). Indeed, any orthogonal matrix has determinant ±1, so SOn can be described as
the subset of On which consists of orthogonal matrices with positive determinant. That is an open subset
and hence a submanifold of On whose dimension is the same as the dimension of On .

Exercise 25.4. Show that On consists of two connected components, one of which is SOn. Hint: use the
canonical form theorem for orthogonal matrices.

For a Lie group G, we will denote by g it tangent space at the identity element id ∈ G.

Example 25.5. The space gln is the tangent space at the identity of GLn. Since GLn is an open subset
in the vector space of all n× n matrices, gln is just the space of all n× n matrices.

Example 25.6. Since SOn is an open subset of On, they have the same tangent spaces at the identity:
son = on (the notation on is not very common). Furthermore, since On can be described as the level set
of the map Φ: X 7→ XXt (see Example 25.2), its tangent space son at the identity coincides with the
kernel of the differential

dIdΦ(Y ) = Y + Y t.

Thus, son is the space of skew-symmetric matrices.

Exercise 25.7. Since TIdSOn = son, it follows that for any skew-symmetric matrix X ∈ son there is a
smooth curve Y (t) ∈ SOn of orthogonal matrices such that Y (0) = Id and Y ′(0) = X. Give an explicit
construction of the curve Y (t) for given X. Hint: one approach is to once again use the canonical form
of X; alternatively, one can define Y (t) by the matrix exponential

Y (t) = exp(tX) =

∞∑
k=0

1

k!
(tX)k;

what needs to be shown is that the exponential of a skew-symmetric matrix is orthogonal.
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We now show that the tangent space g at the identity of any Lie group G has a natural structure of a
Lie algebra, i.e. it equipped with a binary operation [ , ] which is bilinear, skew-symmetric, and satisfies
the Jacobi identity. So, to every group one can associate a Lie algebra. Conversely, one can show that
every finite-dimensional Lie algebra corresponds to a Lie group (Lie’s third theorem). Moreover, such a
group G is unique if we require that G is connected and simply connected.

To construct the Lie algebra g of a group G, for a fixed g ∈ G consider the mapping Φg : G→ G given
by Φg(h) = ghg−1. This is a group action since Φg1 ◦ Φg2 = Φg1g2 . Observe also that for any g ∈ G we
have Φg(id) = id. Therefore, the differential didΦg is a mapping of the tangent space g at the identity to
itself. Denote didΦg by Adg. It is also a group action, i.e. Adg1g2 = Adg1 ◦Adg2 . This action is known as
the adjoint action, or adjoint representation. It is indeed a group representation, because Adg is a linear
operator for any g.

Proposition 25.8. For a matrix Lie group G, i.e. for GLn or any its Lie subgroup such as SOn, we
have AdA(B) = ABA−1.

Proof. By definition of the differential, we have

AdA(B) =
d

dt

∣∣∣∣
t=0

(
AB̂(t)A−1

)
,

where B̂(t) is a curve in G such that B̂(0) = Id and B̂′(0) = B. But

d

dt

∣∣∣∣
t=0

(
AB̂(t)A−1

)
= A

(
d

dt

∣∣∣∣
t=0

B̂(t)

)
A−1 = ABA−1.

Example 25.9. The adjoint representation of SOn on son is given by the conjugation action of orthogonal
matrices on skew-symmetric matrices. This action is well-defined because for orthogonal A and skew-
symmetric B we have

(ABA−1)t = (ABAt)t = ABtAt = −ABA−1.

The adjoint representation g 7→ Adg can be viewed as a homomorphism G → GL(g), where GL(g)
stands for invertible linear transformations of g. Taking the differential of this homomorphism at the
identity, we get a linear map between tangent spaces to G and GL(g) at the identity, i.e. a map g→ gl(g).
The image of an arbitrary element ξ ∈ g under this map is denoted by adξ.

Proposition 25.10. For a matrix Lie group we have adA(B) = [A,B] = AB −BA.

Proof. By definition, we have

adA(B) =
d

dt

∣∣∣∣
t=0

AdÂ(t)B,

where Â(t) is a curve in the group such that Â(0) = Id, and Â′(0) = A. Therefore,

adA(B) =
d

dt

∣∣∣∣
t=0

(
Â(t)BÂ(t)−1

)
=

(
d

dt

∣∣∣∣
t=0

Â(t)

)
B −B

(
d

dt

∣∣∣∣
t=0

Â(t)

)
= AB −BA,

where we used that
d

dt
Â(t)−1 = −Â(t)−1

(
d

dt
Â(t)

)
Â(t)−1

for any smooth curve Â(t) in GLn.
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For an arbitrary Lie group G the formula adξη = [ξ, η] is taken as the definition of the bracket [ξ, η]:

[ξ, η] = adξη ∀ ξ, η ∈ g.

One can show that this bracket is bilinear, skew-symmetric, and satisfies the Jacobi identity, so it turns
the tangent space g of the Lie group G at the identity into a Lie algebra. The mapping g → gl(g) given
by ξ 7→ adξ is called the adjoint representation of the Lie algebra g.

Exercise 25.11. Using the Jacobi identity, show that ξ 7→ adξ is indeed a Lie algebra representation in
the sense that ad[ξ1,ξ2] = [adξ1 , adξ2 ], where the latter bracket is the usual commutator of operators. In
other words, ξ 7→ adξ is a homomorphism of Lie algebras g→ gl(g).

Exercise 25.12. Show that gln endowed with the matrix commutator is indeed a Lie algebra (one needs
to verify the Jacobi identity).

Exercise 25.13. For a Lie group G let λg : G → G be the left translation by g, i.e. the mapping given
by λg(h) = gh. A tensor field T on G is called left-invariant if (λg)∗T = T for any g ∈ G (observe that
λg is a diffeomorphism so the push-forward (λg)∗T is well-defined). Prove that for any ξ ∈ g there exists
a unique left-invariant vector field vξ on G such that vξ(id) = ξ.

Exercise 25.14. Prove that the commutator of left-invariant vector fields is left-invariant. A more
difficult part: prove that the mapping ξ 7→ vξ is a Lie algebra isomorphism between g and left-invariant
vector fields on G. Thus, one can define the bracket on g via the Lie bracket of the corresponding left-
invariant vector fields. Hint: let g(t) be the integral curve of vξ with g(0) = id. Then, by left-invariance,
hg(t) is also an integral curve for any h ∈ G. Thus, the flow of vξ is given by h 7→ hg(t), i.e. the flow of a
left-invariant vector field is given by right translations. Denoting the right translation by g as ρg,
we have that the time t shift along the trajectories of vξ is given by ρg(t). This allows us to compute the
bracket [vξ, vη] as the t-derivative of (ρg(t))

∗vη at t = 0. Further, observe, that right translations commute
with left translations, so the pull-back of a left-invariant vector field vη by a right translation is again a
left-invariant vector field. Express this left-invariant vector field in the form v∗ and use this expression to
compute the Lie bracket [vξ, vη].

Exercise 25.15. Show that the space SLn of real n × n matrices with determinant 1 is a Lie group.
Show that its Lie algebra is the space sln of matrices with trace 0.

Exercise 25.16. Show that invertible upper-triangular matrices form a Lie group. Describe its Lie
algebra.

Lecture 26: Lie-Poisson brackets and their symplectic leaves

Let g be a finite-dimensional Lie algebra. Then, on the dual space g∗ of g one has the following Poisson
bracket, called the Lie-Poisson bracket :

{f, g}(x) = x([df(x), dg(x)]).

Here f and g are arbitrary smooth functions on g∗, and x ∈ g∗. Note that the differentials df(x), dg(x)
belong to the cotangent space T ∗xg

∗, but since g∗ is a vector space, that cotangent space can be canonically
identified with (g∗)∗ = g. Therefore, the Lie bracket [df(x), dg(x)] is well-defined. It is an element of the
Lie algebra g (depending on x), so x([df(x), dg(x)]) is a well-defined function of x.
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Note also that as coordinate functions on g∗ one can take linear functions. Furthermore, linear
functions on g∗ can be identified with elements of g. For two such functions ξ, η ∈ g, we have dξ(x) = ξ
and dη(x) = η, so their Lie-Poisson bracket is given by

{ξ, η}(x) = x([ξ, η]),

which means that the bracket of two linear functions ξ, η is again a linear function, corresponding to the
Lie algebra element [ξ, η]. In other words, for linear functions we have

{ξ, η} = [ξ, η]. (36)

Since a Poisson structure is uniquely determined by pairwise brackets of coordinate function, formula
(36) can be taken as an alternative definition of the Lie-Poisson bracket. In other words, the Poisson-
Lie bracket is the unique Poisson bracket that coincides with the Lie bracket on linear function. This
definition also implies the Jacobi identity for the Lie-Poisson bracket. Indeed, by (36) the Jacobi identity
is satisfied for coordinate functions, and hence for all functions (see Exercise 22.3).

Exercise 26.1. Let V be a finite-dimensional vector space endowed with a Poisson structure such that
the bracket of linear functions is a linear function (such Poisson structures are known as linear). Show
that V ∗ has a canonical Lie algebra structure. Thus, there is a one-to-one correspondence between finite-
dimensional Lie algebras and finite-dimensional vector spaces with linear Poisson structures.

Exercise 26.2. Show that the bracket from Example 22.4 is the Lie-Poisson bracket on the dual of the
algebra so3 of 3× 3 skew-symmetric matrices.

Exercise 26.3. Show that the bracket (35) is the Lie-Poisson bracket on the dual of the algebra sl2 of
2× 2 traceless matrices.

We will now describe symplectic leaves of Lie-Poisson brackets. To that end, we will need the notion
of the coadjoint representation for a Lie group and Lie algebra. Recall that the adjoint representation
g 7→ Adg of a Lie group G is a representation of G on its Lie algebra g, i.e. Adg is an (invertible) operator
g→ g for every g ∈ G. The coadjoint representation g 7→ Ad∗g is defined as the dual representation on g∗.
Namely, the operator Ad∗g is, by definition, the dual of the operator Adg−1 = (Adg)

−1. In other words,
for every x ∈ g∗, ξ ∈ g we have

(Ad∗gx)(ξ) = x(Ad−1g ξ).

This is a group representation. Indeed, denote by A† the dual of A. Then

Ad∗g1g2 = ((Adg1g2)−1)† = ((Adg1Adg2)−1)† = ((Adg1)−1)†((Adg2)−1)† = Ad∗g1Ad∗g2 .

Example 26.4. For the Lie group GLn, we can identify its Lie algebra gln and its dual gl∗n by means of
the non-degenerate symmetric bilinear form

TrXY =
n∑

i,j=1

XijYji.

Thus, elements of gl∗n can be also represented by matrices. In this model, the coadjoint operator Ad∗Z
is defined as the adjoint (with respect to the TrXY inner product) of Ad−1Z . But AdZ is an orthogonal
operator for every Z ∈ GLn, because

Tr AdZXAdZY = TrZXZ−1ZY Z−1 = TrZXY Z−1 = TrXY.
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So, the adjoint of Ad−1Z coincides with AdZ , i.e. Ad∗Z = AdZ . In other words, the coadjoint representation
of GLn coincides with the adjoint representation, provided that we identify gln and its dual gl∗n by means of
the form TrXY . More generally, coadjoint and adjoint representations of a Lie group G coincide if its Lie
algebra g admits an invariant inner product, i.e. a non-degenerate (but not necessarily positive-definite)
symmetric bilinear form such that

〈Adgξ,Adgη〉 = 〈ξ, η〉 ∀g ∈ G, ξ, η ∈ g.

Besides gln, another example of a Lie algebra admitting an invariant inner product is son. The inner
product on son is obtained by restricting the TrXY product from gln. The so-obtained inner product is
still non-degenerate. Moreover, it is negative definite, since for a skew-symmetric matrix X we have

TrX2 =

n∑
i,j=1

XijXji = −
n∑

i,j=1

X2
ij ,

which is negative as long as X 6= 0. Thus, the coadjoint representation for son also coincides with the
adjoint representation. The algebra son is an example of a simple Lie algebra (i.e. a Lie algebra with
no non-trivial ideals). All simple Lie algebras admit an invariant inner product (given by the so called
Killing form), and their coadjoint and adjoint representations coincide. More generally, this is true for
all reductive Lie algebras, such as gln. There are also examples of non-reductive Lie algebras with this
property, see e.g. [3].

Exercise 26.5. Another example of a simple Lie algebra is the algebra sln of traceless matrices. Show
that as an invariant inner product on sln one can again take the form form TrXY (a non-trivial part is
to explain why this form is non-degenerate). Hint: what is the orthogonal complement of the identity
matrix in gln with respect to the TrXY form?

Exercise 26.6. Show that for the group of invertible 2 × 2 upper-triangular matrices the adjoint and
coadjoint representations are different.

The coadjoint representation ξ 7→ ad∗ξ of a Lie algebra is defined by the corresponding group repre-
sentation in the same way as in the adjoint case (more generally, any Lie group representation defines a
representation of the corresponding Lie algebra). Namely the mapping ξ 7→ ad∗ξ from g to gl(g∗) is the
differential of the mapping g 7→ Adg from G to GLn(g∗).

Proposition 26.7. The operator ad∗ξ is dual to −adξ = ad−ξ.

Proof. Let g(t) be a curve in the corresponding group G such that g(0) = id and g′(0) = ξ. Then, by
definition of the coadjoint representation, we have

(Ad∗g(t)x)(η) = x(Ad−1g(t)η).

for every x ∈ g∗, η ∈ g. Differentiating this with respect to t at t = 0 and using that

adξ =
d

dt

∣∣∣∣
t=0

Adg(t), ad∗ξ =
d

dt

∣∣∣∣
t=0

Ad∗g(t)

we get
(ad∗ξx)(η) = −x(adξη),

as desired.
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We can now rewrite the Lie-Poisson bracket in terms of the coadjoint representation:

{f, g}(x) = x([df(x), dg(x)]) = x(addf(x)dg(x)) = −(ad∗df(x)x)(dg(x)).

The latter expression for the Poisson bracket means that the corresponding Poisson tensor at a point
x ∈ g∗, understood as an operator from the cotangent space to tangent space, i.e. as an operator g→ g∗,
is given by

ξ 7→ −ad∗ξx. (37)

In particular, the image of the Poisson tensor at x consists of all possible images of x under the coadjoint
action of g.

Corollary 26.8. Symplectic leaves of the Lie-Poisson bracket on the dual of a Lie algebra g are orbits of
the coadjoint representation of the corresponding Lie groups G.

Remark 26.9. If the group G is disconnected, then its coadjoint orbits may be disconnected as well. In
this case, symplectic leaves of the Lie-Poisson bracket coincide with connected components of coadjoint
orbits.

Proof of Corollary 26.8. It suffices to show that the tangent space to such an orbit at every point coin-
cides with the image of the Poisson tensor. In other words, the tangent space to the orbit of coadjoint
representation of the group coincides with the orbit of the coadjoint representation of the corresponding
algebra. This can be easily proved using the following well-known fact: for any smooth Lie group action,
the mapping g 7→ g ◦x from the group G to the orbit of x is a submersion. Applying this for the coadjoint
action, we see that the tangent space to the orbit of x consists of vectors of the form

d

dt

∣∣∣∣
t=0

(Ad∗g(t)x),

where g(t) are all possible smooth curves in the group such that g(0) = id. But this can be rewritten as
ad∗g′(0)x, hence the result.

Corollary 26.10. Coadjoint orbits of any Lie group G carry a canonical symplectic structure.

This structure is known as the Kirillov-Kostant-Souriau symplectic form.

Example 26.11. Let g be a Lie algebra which admits an invariant inner product. Then coadjoint and
adjoint orbits coincide, so symplectic leaves of the corresponding Lie-Poisson bracket can be identified
with adjoint orbits. In particular, for matrix Lie algebras, such as gln, sln, and son, the adjoint action is
given by B 7→ ABA−1, so symplectic leaves coincide with conjugacy classes of matrices. For example, two
matrices B,C ∈ gln belong to the same leaf if and only if there exists A ∈ GLn such that C = ABA−1.

Remark 26.12. The conjugacy class of a given matrix is, generally speaking, disconnected. So, a more
precise characterization of symplectic leaves for matrix Lie algebras is that they are connected components
of conjugacy classes. This issue does not arise for the groups SLn and SOn, because those groups are
connected.

Lecture 27: Lie-Poisson brackets and Casimirs

Recall that a function f on a Poisson manifold is called a Casimir function if {f, g} = 0 for any other
smooth function g. Equivalently, Casimirs can be characterized as functions constant on every symplectic
leaf. For Lie-Poisson brackets, symplectic leaves coincide with orbits of the coadjoint action of the
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connected Lie group G on the dual g∗ of the Lie algebra g of G. Therefore, Casimirs are functions
constant on coadjoint orbits. In other words, a smooth function f on g∗ is a Casimir if an only if it is
invariant under the coadjoint action, i.e.

(Ad∗g)
∗f = f ∀ g ∈ G,

or, which is the same,
f(Ad∗gx) = f(x) ∀ g ∈ G, x ∈ g∗.

Example 27.1. For matrix Lie groups (such as GLn, SLn, and SOn) coadjoint action coincides with
the adjoint one, i.e. the conjugation action. Thus, for such groups Casimirs of the Lie-Poisson bracket
are precisely conjugation invariant functions (more precisely, in the GLn case one needs to consider
functions that are invariant under conjugation by matrices with positive determinant; this is because
GLn is disconnected, so in that case symplectic leaves are coadjoint orbits for the connected component
of the identity, which is precisely the subgroup of matrices with positive determinant). In the GLn case
as conjugation invariant functions one can take coefficients fi(A) of the characteristic polynomial

det(A− λId) =

n∑
i=0

fi(A)λi.

This gives n conjugation-invariant polynomial functions f1, . . . , fn−1 (we exclude fn because it is constant,
namely fn = (−1)n). For example,

f0(A) = detA, fn−1(A) = (−1)n−1TrA.

One can show that any other conjugation-invariant polynomial can be expressed as a polynomial of
f0, . . . , fn−1. In more algebraic terms, f1, . . . , fn−1 generate the associative algebra of conjugation-
invariant functions (moreover, it can be shown that they generate this algebra freely, i.e. there are
no polynomial relations between f1, . . . , fn−1). As another set of generators, one can take functions
hi(A) = TrAi, where i = 1, . . . , n. Functions h1, . . . , hn can be expressed in terms of f0, . . . , fn−1, and
vice versa. The corresponding formulas are known as Newton’s identities. For example, for 2× 2 matrices
we have f0 = detA, f1 = −TrA, so

h1 = TrA = −f1, h2 = TrA2 = f21 − 2f0.

The latter formula follows from the following expressions in terms of eigenvalues λ1, λ2:

f1 = −(λ1 + λ2), f0 = λ1λ2, h2 = λ21 + λ22.

Thus, as Casimirs of the Lie-Poisson bracket on gl∗n one can take either coefficients of the characteristic
polynomial, or traces of powers (up to TrAn). Furthermore, the same functions can be taken as Casimirs
for other matrix Lie algebras, although some of them become trivial. In particular, in the SLn case we
have TrA = 0, so as Casimirs it suffices to take TrA2, . . . ,TrAn, or, alternatively, all coefficients of the
characteristic polynomial up to the coefficient of λn−2. In the SOn case, even more Casimirs become
trivial. Indeed, if A ∈ son is skew-symmetric, then so is any odd power of A, therefore TrA = TrA3 =
· · · = 0, and as Casimirs we can take traces of even powers of A.

Exercise 27.2. Describe Casimirs of the Lie-Poisson bracket on so∗n in terms of coefficients of the char-
acteristic polynomial. Which of those coefficients vanish identically?
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Remark 27.3 (On Lax form of Hamiltonian equations). To say that traces of powers are Casimirs in
the dual g∗ of a martix Lie algebra g is the same as to say that those functions are first integrals for any
Hamiltonian evolution in g∗. The latter can be also seen from the Lax form of Hamiltonian equations.
From the form (37) of the Lie-Poisson tensor on g∗ we get that the Hamiltonian equation with Hamiltonian
function H reads

ẋ = −ad∗dH(x)x.

If g admits an invariant inner product (in particular if g is a matrix Lie algebra such as gln, sln, or son),
then identifying g∗ with g by means of that inner product we identify ad∗ with ad. Therefore in that case
the above Hamiltonian equation rewrites as

ẋ = −addH(x)x = −[dH(x), x] = [x, dH(x)]. (38)

In the case of a matrix () Lie algebra the latter bracket is the usual matrix commutator, so this Hamiltonian
equation is an example of a Lax equation. One says that a matrix (or, more generally, an operator in an
infinite-dimensional vector space) L depending on time t satisfies a Lax equation if

dL

dt
= [L,A]

for some other (generally speaking, t-dependent) matrix (operator) A. The matrices L and A entering
this equation are known as a Lax pair. An equation that can be written in a Lax form is said to admit a
Lax representation. An immediate corollary of the Lax form is preservation of traces of powers:

Exercise 27.4. Show that if L satisfies a Lax equation, then Lk also satisfies a Lax equation, with the
same A. Conclude that the traces of powers of L do not depend on time.

We thus once again see that Hamiltonian equations on the dual of matrix Lie algebras preserve traces
of powers, which means that those traces are Casimirs.

Observe also that preservation of traces of powers of L in Lax evolution is equivalent to preservation
of the spectrum (eigenvalues) of L. Thus, Lax equations describe isospectral deformations. In fact, even
a stronger statement is true: Lax evolution preserves Jordan normal form. In other words, the matrix
L(t) is conjugate to L(0) for any t:

Exercise 27.5. A matrix L(t) satisfies a Lax equation if and only if there exists another t-dependent
matrix U(t) such that L(t) = U(t)−1L(0)U(t). In other words, a Lax equation describes an evolution of
a matrix in its conjugacy class (we already know this for Hamiltonian equations on duals of matrix Lie
algebras, because conjugacy classes are precisely symplectic leafs, which are preserved by Hamiltonian
vector fields).

Example 27.6. Let us discuss in more detail the Lie-Poisson bracket on so∗3, the corresponding Casimirs,
and symplectic leaves. We actually already discussed that bracket in Example 22.4, but now we will do
the same from the Lie theory perspective. Recall that so∗3 can be identified with so3 by means of the form
TrXY and thus consists of skew-symmetric matrices

A =

 0 x y
−x 0 z
−y −z 0

 .

The only “non-trivial” Casimir in this case is TrA2 = −2(x2 + y2 + z2) (cf. Example 22.4). Its level
sets are spheres centered at the origin, as well as the origin itself. From this it can be deduced, as
in Example 22.4, that symplectic leaves in this example coincide with level sets of the Casimir. This
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can also be seen directly, arguing as follows. Symplectic leaves in so∗3 = so3 coincide with orbits of the
conjugation action of SO3 on so3. Every skew-symmetric operator on R3 can be brought, by an orthogonal
transformation, to the form

A =

 0 ω 0
−ω 0 0
0 0 0

 . (39)

Moreover, such a normal form is unique, up to replacing ω with −ω, because the eigenvalues of the latter
matrix are ±ω

√
−1, so matrices with different |ω| are not conjugate to each other. Thus, conjugacy

classes of 3× 3 skew-symmetric matrices are characterized by |ω| =
√
−1

2TrA2.

Exercise 27.7. In this argument we actually used that every skew-symmetric operator in R3 can be
brought, by a special orthogonal transformation (i.e. a transformation in SOn), to the form (39). Explain
why in this case one does not need to distinguish between orthogonal and special orthogonal transforma-
tions.

Example 27.8. We will now discuss in detail the case of sl∗2 (cf. Example 24.5). The space sl∗2 = sl2
consists of matrices of the form

A =

(
a b
c −a

)
.

As a Casimir function we can take detA = −a2 − bc. By performing change of variables a = x, b =
y + z, c = y − z, we can rewrite this function in the form detA = −x2 − y2 + z2. Therefore, the level set
detA = c is a two-sheeted hyperboloid for c > 0, cone for c = 0, and one-sheeted hyperboloid for c > 0.
From this one obtains the following description of symplectic leaves (cf. Example 24.5): each one-sheeted
hyperboloid is a leaf, each sheet of each two-sheeted hyperboloid is a leaf, while the cone consists of three
leaves: the origin, and two connected components of the complement to the origin. At the same time,
we know that symplectic leaves in sl∗2 are given by Jordan normal forms of traceless 2 × 2 matrices. To
describe such forms, observe that from Tr = 0 condition it follows that the eigenvalues form a pair ±λ.
Therefore, the following cases are possible:

• Two real non-zero eigenvalues ±λ. The corresponding normal form is(
λ 0
0 −λ

)
.

In this case, the determinant is −λ2 < 0, so the corresponding symplectic leaf is a one-sheeted
hyperboloid.

• Two imaginary non-zero eigenvalues ±ω
√
−1. The corresponding normal form is(

ω
√
−1 0

0 −ω
√
−1

)
,

or (
0 ω
−ω 0

)
.

In this case, we have det = ω2 > 0, which means that the level set of the Casimir consists of
two symplectic leaves (two sheets of a two-sheeted hyperboloid). The point is that even though
all 2 × 2 matrices with eigenvalues ±ω

√
−1 are conjugate, they may not be conjugate in SL2 (see

Exercise 27.9 below).
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• The matrix is non-zero, but both eigenvalues are zero. This corresponds to matrices with Jordan
normal form (

0 1
0 0

)
.

The corresponding leaf is one of the two open halves of the complement of the origin in the cone.
There are again two leafs because it may be not possible to bring to a Jordan normal form using a
matrix from SL2.

Exercise 27.9. Show that the matrices(
0 1
−1 0

)
,

(
0 −1
1 0

)
have the same eigenvalues and Jordan normal forms but are not conjugate in SL2(R). Are they conjugate
in SL2(C)?

Lecture 28: Lie-Poisson brackets from Poisson reduction

In this lecture we will give a construction of Lie-Poisson structures starting from the canonical Poisson
structure on the cotangent bundle. This explains the relevance of Lie-Poisson structures in physics. The
construction is based on the notion of Poisson reduction, which we will now discuss.

Assume that M is a manifold, and G is a group acting on M . This means that for every g ∈ G we
have a mapping ρg : M →M , and that ρgh = ρg ◦ ρh. We will say that the G-action is good (this is not a
standard term) if

1. The quotient space M /G is a smooth manifold.

2. The natural projection mapping pr : M → M/G is smooth. As a corollary, any smooth function f
on M/G lifts to a smooth G-invariant function f ◦ pr on M .

3. Conversely, any smooth G-invariant function on M descends to a smooth function on M/G.

Remark 28.1. There is no reason why these assumptions should be satisfied for general group actions
on manifolds. They are, however, satisfies for certain classes of actions. For example, by the quotient
manifold theorem [15] the above assumptions hold if G is a Lie group acting on M smoothly (i.e. the
action mapping (g, x) 7→ ρg(x) is smooth), freely, and properly (i.e. the mapping G×M →M ×M given
by (g, x) 7→ (ρg(x), x) is proper). In particular, our assumptions are satisfied for free actions of compact
(and, in particular, finite) Lie groups.

Example 28.2. Consider an R action on R2 given by (x, y) 7→ (x + t, y). The orbits of this action are
horizontal lines, so the quotient R2 /R can be identified with R. The projection mapping pr : R2 → R2 /R
is the map (x, y) 7→ y. It is easy to see that all the above assumptions are satisifed: the quotient is smooth,
and the projection mapping is smooth as well. Finally, an R-invariant smooth function on R2 must be of
the form f(y), so it descends to a smooth function on the quotient. Thus, this action is a good action.

Example 28.3. Consider an action of S1 on R2 by rotations about the origin. For this action, the orbits
are circles centered at the origin, plus the origin itself. The quotient is homeomorphic to a closed ray,
which is not a manifold. Thus, this action is not good. It does, however, become good if remove the
origin from R2 (as follows e.g. from the quotient manifold theorem, see Remark 28.1). This situation is
quite typical: there are many actions which are not good but become good upon removal of a certain zero
measure singular set from the manifold M .
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For good actions, there is natural isomorphism between the space C∞(M/G) of smooth functions on
the quotient and the space C∞(M)G of smooth G-invariant functions on M . Explicitly, the mapping
C∞(M/G)→ C∞(M)G is given by the pull-back pr∗.

Perhaps the easiest way to show that a given action is good is to construct a section. We say that a
smooth submanifold S ⊂ M is a section of a G-action if it intersects each G-orbit at exactly one point.
Furthermore, we will say that S is a good section (again, non-standard terminology) if the mapping
M → S which takes x to the intersection point of its G-orbit with S is smooth.

Example 28.4. Show that if a G-action of M admits a good section S, then M/G is homeomorphic to S
and therefore carries a smooth manifold structure. Hence show that an action admitting a good section
is good.

Exercise 28.5. Show that x = 0 is a good section of the action from Exercise 28.2. Show that y = x3 is
also a section, but not good.

If an action admits a good section S, then we can identify the quotient M/G with S. We therefore
have an isomorphism between the spaces C∞(M)G and C∞(S). Explicitly, this isomorphism is given by
restriction.

We will now assume that M is a Poisson manifold, and that the G-action on M is Poisson, which
means that ρg : M →M is a Poisson diffeomorphism for every g. In other words,

ρ∗g{f1, f2} = {ρ∗gf1, ρ∗gf2} ∀ g ∈ G, f1, f2 ∈ C∞(M).

Exercise 28.6. Show that a diffeomorphism ρ : M →M is Poisson if and only if ρ∗π = π, where π is the
Poisson tensor.

Proposition 28.7. Assume that we are given a Poisson action of G on M . Then the Poisson bracket of
G-invariant functions is a G-invariant function.

Proof. Let f1, f2 ∈ C∞(M)G be G-invariant functions. Then, since the G-action is Poisson, we have

ρ∗g{f1, f2} = {ρ∗gf1, ρ∗gf2}.

Further, by G-invariance, we get
{ρ∗gf1, ρ∗gf2} = {f1, f2},

so
ρ∗g{f1, f2} = {f1, f2},

which exactly means that {f1, f2} is a G-invariant function.

Thus, for Poisson G-actions, the space C∞(M)G of G-invariant functions is closed under the Poisson
bracket. For good actions, that space can be canonically identified with the space of C∞(M/G) of smooth
functions on the quotient. Thus, the algebra of smooth functions on the quotient by a good Poisson action
carries a Poisson structure. In other words, if we have a good Poisson action of a group G on a
Poisson manifold M , then M/G also carries a structure of a Poisson manifold. This procedure
allowing one to construct a Poisson structure on the quotient is known as Poisson reduction, and the
Poisson structure on M/G is called the reduced Poisson structure. Reduction of Poisson manifolds was
introduced in [13] as a generalization of an earlier notion of symplectic reduction [12].

Our main example here is left action of a Lie group G on T ∗G. The group G acts on itself via left
translations λg(h) = gh. The cotangent lift λ̂g of that action preserves the canonical symplectic structure
on T ∗G (see Exercise 20.1), and hence the Poisson structure. So, the left action of G on T ∗G is Poisson.
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Exercise 28.8. Show that g∗ = T ∗idG is a good section of the left G-action on T ∗G. Therefore, that
action is a good action.

Thus, the quotient T ∗G/G has a Poisson manifold structure. Furthermore, since g∗ is a good section,
we can identify T ∗G/G with g∗. To compute the reduced Poisson structure on T ∗G/G = g∗, we need
to extend two given functions on g∗ to G-invariant functions on T ∗G, compute the bracket of obtained
functions, and then again restrict to g∗. Since a Poisson structure is determined by brackets of coordinate
functions, it suffices to do this for linear functions on g∗.

Exercise 28.9. Let ξ ∈ g be a linear function on g∗. Then its extension to a left-invariant function on
T ∗G is given by fvξ , where vξ is a left-invariant vector field on G with vξ(id) = ξ (see Exercise 25.14),
and fvξ is the corresponding function on T ∗G (see Section 20).

Exercise 28.10. Using the above exercise, Exercise 25.14, and Proposition 20.6 show that the reduced
Poisson structure on T ∗G/G = g∗ coincides with the Lie-Poisson structure.

Thus, the Lie-Poisson structure on g∗ arises as a reduction of the canonical symplectic structure on
T ∗G by the left G-action. One can also show that the right action gives rise to the same Poisson structure,
but with an opposite sign.

Lecture 29: Reduction of Hamiltonian dynamics and rigid body motion

In the previous lecture we considered the situation when a group G acts in a Poisson way on a Poisson
manifold M . We saw that if the action is what we called good, then the quotient M/G carries a canonical
Poisson structure, called the reduced Poisson structure. We will now show that this reduction procedure
can also be applied to Hamiltonian dynamics, provided that the Hamiltonian function is G-invariant.

Assume first that we have an arbitrary G-invariant vector field v on M . Then, assuming that M/G
is smooth, and so is the projection pr : M →M/G, we can push the vector field v forward to M/G. This
pushforward is defined by the formula

(pr∗v)(y) = d(pr)(v(x)),

where y ∈ M/G is arbitrary and x ∈ M is such that pr(x) = y. Note that the expression d(pr)(v(x))
does not depend on the choice of x ∈ pr−1(y), because if x, x′ both belong to pr−1(y), then they belong
to the same G-orbit, i.e. there is g ∈ G such that ρg(x) = x′. But then by G-invariance of v we have,

dρg(v(x)) = v(x′),

so
d(pr)(v(x′)) = d(pr ◦ ρg)(v(x)) = d(pr)(v(x)),

where we used that pr ◦ ρg = pr. Thus, a G-invariant vector field on M descends to a vector field pr∗v
on the quotient M/G.

Exercise 29.1. Show that if the G-action on M is good, and v is a G-invariant vector field, then the
push-forward pr∗v is smooth. Hint: show that for an arbitrary smooth function f on M/G we have

(Lpr∗vf)(y) = (Lv(pr
∗f))(x)

for any x ∈ M and y = pr(x). Show that the function Lv(pr
∗f) is G-invariant. Deduce that Lpr∗vf is a

smooth function.
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Now assume that H ∈ C∞(M)G is a smooth G-invariant function on M . Then, if the action of G
on M is Poisson, the Hamiltonian vector field XH is also G-invariant. So, as explained above, we have a
well-defined push-forward pr∗XH on M/G.

Proposition 29.2. The push-forward vector field pr∗XH is Hamiltonian with respect to the reduced Pois-
son structure on M/G. The corresponding Hamiltonian functions is the push-forward of the Hamiltonian
pr∗H:

pr∗XH = Xpr∗H .

Proof. Let f ∈ C∞(M/G) be arbitrary. Then

Lpr∗XHf = df(pr∗XH).

By definition of pull-back as the dual of the push-forward, this can be further rewritten as

(pr∗df)(XH) = d(pr∗f)(XH) = LXHpr
∗f = {H, pr∗f}M .

The latter is the bracket of two G-invariant functions on M , so be definition of the reduced Poisson
structure on G/M that expression is equal to {pr∗H, f}M/G. Thus, we have

Lpr∗XHf = {pr∗H, f}M/G,

which means that the vector field pr∗XH is Hamiltonian with respect to the reduced Poisson structure,
with Hamiltonian function given by pr∗H.

Thus, Hamiltonian dynamics invariant under a Poisson action descends to Hamiltonian dynamics on
the quotient by the action. As an example, consider the motion of a rigid body fixed at one of its points
moving under the action of no external forces (to emphasize the absence of external forces, one usually
calls this a free rigid body). To describe a position of a body, consider an orthonormal frame which is
frozen in the body, i.e. rotating together with the body. It is then clear that the position (orientation)
of the body determines the frozen frame and vice versa. Furthermore, the frozen frame is determined by
an operator taking the vectors of a fixed orthonormal frame in the space (a space frame) to the vectors
of the frozen frame (body frame). Assuming that the space frame consists of the standard basis vectors
in R3, the matrix of such an operator has the vectors of the frozen frame as its columns. Since the frozen
frame is orthonormal, that matrix A is orthogonal. Furthermore, if the frozen frame is chosen positively
oriented, then one has detA = 1, and thus A ∈ SO3. Therefore, one can identify a position of a rigid
body with a fixed point with a matrix A ∈ SO3. In other words, SO3 is the configuration space of such
a rigid body. The dynamics of the body is therefore governed by a Hamiltonian system on T ∗SO3, with
the Hamiltonian given by the inverse of the kinetic energy (there are no external forces and hence no
potential energy).

Let us now show that the kinetic energy of the rigid body is given by a left-invariant metric on SO3,
i.e. a metric that is invariant under the left action of SO3 on itself. The origin of that invariance is
what physicists call “isotropy of space”, which means that Newtonian law of motions are the same in
every space direction (provided there is no gravity field which breaks the isotropy). Explicitly, the kinetic
energy is given by the integral over the whole body of the quantity 1

2〈Ṙ, Ṙ〉, where R is the radius-vector
(in the space frame) of the given point in the body. Assuming that both the body and the space frame
are centered at the fixed point, we have R = Ar, where r is the radius-vector of the same point in the
body frame. Since the body frame is frozen in the body, we have r = const: the radius-vector of any
point in the body has fixed coordinates in the body frame. Therefore, we have

〈Ṙ, Ṙ〉 = 〈Ȧr, Ȧr〉.
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But the latter expression is invariant under transformations of the form A 7→ BA, where B ∈ SO3 is time-
independent. Therefore, the kinetic energy is indeed invariant under the left action of G on itself, while
the associated Hamiltonian is invariant under the left action of G on T ∗G. Thus, the rigid body dynamics
descends to a Hamiltonian system on T ∗SO3/SO3 = so∗3. The corresponding Hamiltonian function can be
obtained by restricting the inverse of the kinetic energy from T ∗SO3 to so∗3 and is, therefore, a quadratic
form. Thus, we obtain the following:

Corollary 29.3. The dynamics of a rigid body fixed at one of its points moving under the action of
no external forces is described by a Hamiltonian system. The corresponding Poisson structure is the
Lie-Poisson structure on so∗3, while the Hamiltonian function is quadratic.

What is the physical meaning of this reduced system? Taking the quotient by SO3 means identifying
configurations (or, more precisely, phase space points) related to each other by rotation. We thus com-
pletely disregard the position of the body and from now on only measure its velocity. This is somewhat
easier to understand at the level of the tangent bundle. The dynamics of the body can be thought of as
a flow on TSO3. The corresponding vector field is invariant under the left SO3-action and thus descends
to the quotient TSO3/SO3. The latter can be identified with the Lie algebra so3, in the same way as we
identified T ∗SO3/SO3 with so∗3. The projection TSO3 → T ∗SO3/SO3 = so3 maps the tangent vector
Ȧ ∈ TASO3 to the vector Ω = A−1Ȧ. The latter expression can be interpreted as the velocity of rotation
of the body frame, expressed in terms of the body frame itself. It is known as the angular velocity. The
reduction of the dynamics on TSO3 to the dynamics on so3 means rewriting the dynamical equations in
terms of the angular velocity. The invariance of the initial equations under the SO3-action guarantees
that the so obtained equations form a closed system, i.e. that the change of the angular velocity can be
expressed as the function of the angular velocity itself and does not depend on the position.

Remark 29.4. The angular velocity has the following interpretation. First recall that the space so3 of
3× 3 skew-symmetric matrices can be identified with R3. This identification if performed by mapping a
vector x ∈ R3 to the operator Ax(y) = x × y, where the latter product is the cross-product of vectors.
Using this identification, one can identify the angular velocity matrix with a vector. That vector is known
as the angular velocity vector. Its direction has a meaning of the instantaneous rotation axis, while its
magnitude is the speed of rotation about that axis.

The reduction of dynamics to so∗3 can be interpreted in a similar way. Since the flows of T ∗SO3

and TSO3 are related by the Legendre transform, the equations on so3 and so∗3 are related by a linear
operator I : so3 → so∗3, determined by the kinetic energy at the identity element of the group. That
operator I is determined by the shape of the body and is known as the the inertia tensor. The image of
the angular velocity Ω under the inertia operator is denoted by M and is called the angular momentum.
The Hamiltonian equation on so∗3 is thus the evolution of the angular momentum. Since it is related to
the angular velocity by means of a constant operator, we can again interpret this equation as the velocity
evolution separated from the position evolution.

Since the free rigid body dynamics is a Hamiltonian system on so∗3, it is an integrable system. Indeed,
the symplectic leaves in so∗3 are two-dimensional, so any Hamiltonian system on so∗3 is integrable. The
corresponding first integrals are the Casimir function TrM2 and the energy function.

Remark 29.5. One can show that this system is also integrable on the initial phase space T ∗SO3. This,
however, does not directly follow from Noether’s principle. The problem is that although the system is
SO3-invariant, the group SO3 is non-commutative, so in addition to the Hamiltonian we get three first
integrals fx, fy, fz which do not Poisson commute with each other. Thus what we get is four non-Poisson-
commuting integrals instead of three Poisson-commuting ones. This is once again a superintegrability (or
non-commutative integrability) situation. One can in fact show that fx and f2x +f2y +f2z Poisson commute
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(for that one shows that the functions fx, fy, fz are given by right-invariant vector fields, and their pairwise
Poisson brackets are equal to negative Lie brackets of the corresponding Lie algebra elements), so in this
case non-commutative integrability implies commutative integrability.

Exercise 29.6. Using this remark, show that generic trajectories of the free rigid body system on T ∗SO3

evolve on two-dimensional tori.

Lecture 30: Free rigid body dynamics

In the previous lecture we saw that the motion of a free rigid body with a fixed point can be regarded as
a dynamical system on so∗3 which is Hamiltonian with respect to the Lie-Poison structure, with quadratic
Hamiltonian function. The exact form of that quadratic function is revealed in the following exercises:

Exercise 30.1. Let A(t) ∈ SO3 be the matrix encoding the position of (the frozen frame in) a rigid body.
Define the angular velocity Ω ∈ so3 by Ω = A−1Ȧ. Show that the kinetic energy of the body is given by

K =
1

2
〈JΩ + ΩJ,Ω〉, (40)

where the inner product on so3 is defined by7

〈X,Y 〉 = −1

2
TrXY =

1

2
TrXY t,

and J is the mass tensor relative to the fixed point, which is defined as the integral over the whole body
of the matrix rrt where r is the (column) radius-vector relative to the fixed point (expressed in the body
frame). The operator so3 → so3 given by Ω 7→ JΩ + ΩJ is known as the inertia tensor (we will reveal
the connection of this definition with the physical one in the next exercise).

Exercise 30.2. Consider a straight line l passing through the fixed point of the body. The moment of
inertia of the body with respect to l is defined as the integral over the whole body of the squared distance
to l. Show that this moment can be computed as

Il = I(e, e),

where e is a unit vector in the direction of l, and I is a quadratic form. Show that upon identification of
R3 with so3 (see Remark 29.4) the form I coincides with the inertia tensor.

Exercise 30.3. Show that the frozen frame can be always chosen in such a way that the mass tensor
J is given by a diagonal matrix. The vectors of such a frozen frame are called principal axes of inertia.
By definition, principal axes of inertia are eigenvectors of the mass tensor. Show that upon identification
of R3 and so3 principal axes of inertia are also eigenvectors of the inertia tensor. The corresponding
eigenvalues of the inertia tensor are known as principal moments of inertia. How are they related to the
eigenvalues of the mass tensor?

Exercise 30.4. Find principal axis of inertia and principal moments for a solid bounded by an ellipsoid.

Exercise 30.5. Show that the Hamiltonian function of the free rigid body on so∗3 has the form

H =
1

2
〈I−1(M),M〉,

7The motivation for this choice of inner product is that it coincides with the standard inner product upon identification
with R3.
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where M is an element of so∗3 identified with a skew-symmetric matrix by means of the form −1
2TrXY ,

and I is the inertia tensor. Furthermore, assuming that the frozen frame consists of principal axes of
inertia, we have

H =
1

2

(
x2

Ix
+
y2

Iy
+
z2

Iz

)
,

where x, y, z are matrix entries of M ∈ so∗3 = so3, and Ix, Iy, Iz are principal moments of inertia.

Using the above formula for the Hamiltonian along with (38) we get the following explicit form of the
rigid body equation:

Ṁ = [M, I−1(Ω)].

Here the angular momentum M ∈ so∗3 = so3 is obtained from the angular velocity Ω by Legendre
transform, which, in view of the form (40) of the kinetic energy, is given by M = I(Ω). Thus, the
equation can be rewritten as

Ṁ = [M,Ω].

Identifying so3 with R3, we recover the classical form of the free rigid body equation:

ṁ = m× ω.

Here m ∈ R3 is the angular momentum vector, expressed in the frozen frame. By definition, this vector
is obtained from the angular velocity ω by applying the inertia tensor.

Exercise 30.6. Show that the angular momentum coincides with the integral over the whole body of the
quantity r × v, where r is the radius-vector (relative to the fixed point) and v is the velocity. Compare
this with the definition of the angular momentum in the lecture on Noether’s principle.

Exercise 30.7. Using the above evolution equation of M and the definition of the angular velocity
Ω = A−1Ȧ show that the matrix AMA−1 is constant. What’s the physical meaning of the corresponding
vector in R3? How is this related to Noether’s principle?

Apart from the Hamiltonian, the free rigid body equation has another conserved quantity, namely the
Casimir

−1

2
TrM2 = x2 + y2 + z2.

Therefore, the trajectories can be described as intersections of level sets of this function (which are spheres)
and level sets of the Hamiltonian (ellipsoids). We begin with describing single-point trajectories, i.e. fixed
points. This can be done e.g. by computing critical points of the Hamiltonian restricted to symplectic
leaves. Such points occur when the differentials of the Hamiltonian and the Casimir are collinear. A
straightforward computation shows that for distinct Ix, Iy, Iz this critical set is the union of coordinate
axes. By construction, this corresponds to rotations about principal axes. Another way to see that is to
notice that m × ω = 0 if and only if m and ω are collinear, which again means that ω is an eigenvector
of the inertia tensor I. We therefore conclude with the following:

Proposition 30.8. Rotations of a free rigid body around its principal axes of inertia are steady motions,
i.e. for such motions the direction and speed of rotation does not change in time. Conversely, any steady
rotation is a rotation about one of the principal axes.

Our further goal is to study more general, non-steady, rotations. Of particular interest are those
that are close to steady ones. We would in particular like to know whether steady rotations are stable.
This can be in principle done using standard ODE techniques, but it is easier to do geometrically, by
intersecting spheres with ellipsoids. See e.g. wikipedia article on the tennis racket theorem (https:
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//en.wikipedia.org/wiki/Tennis_racket_theorem) for visualization of such intersections. One sees
that trajectories close to rotations about the axes corresponding to minimal and maximal moments of
inertia are curves which stay close to the corresponding fixed point. Thus, those steady rotations are
stable. On the other hand, trajectories which start close to rotations about the axis with intermediate
moment of inertia go far away from the corresponding equilibrium, making that equilibrium unstable. In
fact, one can see that trajectories starting close to (0, c, 0) (where we assume that Ix > Iy > Iz) after a
certain period of time come close to the point (0,−c, 0), which means that the direction of rotation is
reversed. This can be clearly seen in the video on the “Dzhanibekov effect” at the same wikipedia page
(note that in this video the body is not fixed, but this is equivalent to fixing the body at the center of
mass). One can also observe instability of rotations about the middle axis experimentally by trying to
spin a tennis racket or a book about the corresponding axis (the gravity force present in this experiment
does not play a role, because the gravity will only affect translational but not rotational motion).

Lecture 31: Integrable cases of heavy rigid body motion

In this lecture we consider the dynamics of a rigid body with a fixed point under the action of the gravity
force. Here we are talking about gravity near the surface of the earth, so the gravity force is always
pointing downward and its magnitude is equal to the mass times a universal constant g (acceleration due
to gravity). The configuration space of this “heavy” rigid body is the same as for the free one, namely
the group SO3. The expression for the kinetic energy is also the same, in particular it is a left-invariant
function on T ∗SO3. A new ingredient in the heavy case is the presence of a non-trivial potential.

Exercise 31.1. Show that the potential energy of a rigid body is equal to mgh, where m is the total
mass, g is acceleration due to gravity, and h is the height of the center of mass relative to the fixed point
(or relative to any other point which occupies a fixed position in space). In particular, if the fixed point
coincides with the center of mass, then the potential energy is a constant function.

From this formula for the potential it is clear that it is invariant under rotations about the z-axis.
Such rotations correspond to a subgroup cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0
0 0 1

 ⊂ SO3

acting on SO3 (and hence T ∗SO3) from the left. This subgroup is isomorphic to a circle S1 and we will
denote it by S1.

Exercise 31.2. Derive an explicit formula for the potential as a function on SO3 and show that it is
invariant under the left action of the above subgroup S1.

So while the kinetic energy of the heavy rigid body still has SO3 symmetry, the potential is only
invariant under the subgroup S1 ⊂ SO3. For that reason in this case we cannot perform reduction by
the SO3 action, but can still reduce by the S1 action (note that the action of S1 on T ∗SO3 is symplectic
since it is a lift of an action of S1 on SO3, cf. the free rigid body case). Since T ∗SO3 has dimension six,
and S1 is one-dimensional, the reduced space T ∗SO3/S

1 is five-dimensional. It carries a reduced Poisson
structure, and the dynamics of the heavy rigid body is Hamiltonian with respect to that structure. One
can show that generic symplectic leaves of the Poisson structure T ∗SO3/S

1 are four-dimensional, and
there is one globally defined Casimir function.
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Exercise 31.3. Use Noether’s principle to show that the left action of S1 on T ∗SO3 is given by a
Hamiltonian vector field. Show that the Hamiltonian function of that vector field descends to the quotient
T ∗SO3/S

1, where it becomes a Casimir function. Does that Hamiltonian function descend to the quotient
T ∗SO3/SO3?

Remark 31.4. One can construct coordinates on the quotient T ∗SO3/S
1 as follows. First, for any

ξ ∈ T ∗ASO3 one defines the angular momentum M ∈ so∗3 as the pull-back of ξ by the left translation
λA. By construction, entries of M are left-invariant. This gives three functions on the five-dimensional
space T ∗SO3/S

1, so we need more functions to get a coordinate system (as follows from our discussion of
the free rigid body case, these three functions define a coordinate system on the quotient T ∗SO3/SO3).
As additional functions one can take entries of the vector Γ which is the unit vector (0, 0, 1) expressed
in the frozen frame. The entries of Γ are S1-invariant and are subject to a relation 〈Γ,Γ〉 = 1. Thus,
the quotient T ∗SO3/S

1 can be identified with the direct product of R3 (parametrized by the entries mx,
my, mz of the angular momentum matrix) and sphere S2 (the set of vectors Γ = (γx, γy, γz) ∈ R3 with
〈Γ,Γ〉 = 1). It can be shown that the Poisson bracket on T ∗SO3/S

1 reads

{mx,my} = mz, {my,mz} = mx, {mz,mx} = my,

{mx, γy} = γz, {my, γz} = γx, {mz, γx} = γy,

while other brackets of coordinate functions vanish. It follows from our construction that this bracket
satisfies the Jacobi identity on the subset 〈Γ,Γ〉 = 1 (because that subset is the image of the reduction
map), but in fact it can be checked that the Jacobi identity holds everywhere. So, the reduced bracket
naturally extends from T ∗SO3/S

1 = R3 × S2 to R3 × R3 = R6. It follows from our construction that
T ∗SO3/S

1 is a Poisson submanifold of R6 with respect to that bracket. Also notice that the so-obtained
bracket on R6 is linear, so it can be regarded as Lie-Poisson bracket for an appropriate Lie algebra. That
Lie algebra is denoted by e3 and is isomorphic to the Lie algebra of Lie group of rigid motions of R3

(including translations). The appearance of that Lie algebra in our problem is apparently accidental:
since one of the points of the body is fixed, the problem does not have translational symmetries.

The Hamiltonian of the rigid body also naturally extends to R6 = e∗3, so we can regard heavy rigid
body equations as equations on e∗3 (but only motions on the submanifold 〈Γ,Γ〉 = 1 have actual physical
meaning). This does not change much from the integrability perspective: the symplectic leaves in e∗3 are
still four-dimensional, and one needs a single additional first integral to ensure complete integrability.

Since the symplectic leaves in T ∗SO3/S
1 (as well in the extended space e∗3 ) are four-dimensional, we

need to find one first integral in addition to the Hamiltonian function to establish complete integrability.
In general, such an additional integral does not exist, see [22] and references therein. It does, however,
exist in the following three special cases:

I. The Euler case. This is the case when the fixed point coincides with the center of mass. In this
case the potential is a constant function (see Exercise 31.1), so it is equivalent to free rigid body motion.
We already saw that system is integrable on so∗3. Furthermore, it is integrable on T ∗SO3/S

1 as well: an
additional integral can be constructed by pulling back the Casimir function on so∗3 using the natural map
T ∗SO3/S

1 → T ∗SO3/SO3. The so obtained function on T ∗SO3/S
1 coincides with m2

x + m2
y + m2

z, the
squared magnitude of the angular momentum.

II. The Lagrange case. This is the case when two principal moments of inertia (say, Ix and
Iy) coincide, and the center of mass is located on the principal axis corresponding to the third principal
moment (i.e. the z axis). An example is a standard spinning top, i.e. a uniform body which is rotationally
symmetric with respect to a line l through a fixed point (there is no actually fixed point in a spinning
top, but the point where the top touches the table can be assumed to be fixed if the friction is large).
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An additional integral in this case can be constructed, using Noether’s principle, from the rotational
symmetry (these rotations about the symmetry axis of the top should not be confused with rotations
about the z axis in space; the latter have been already factored out).

Exercise 31.5. Show that the rotational symmetry of the Lagrange top is given by the right action of
S1 on SO3. Use that to show that this rotation and the corresponding Hamiltonian function descends to
the quotient T ∗SO3/S

1.

III. The Kovalevskaya case. This is the most “mysterious” case, with no apparent physical
symmetry. In this case the ratio of moments of inertia is 2 : 2 : 1, and the center of mass is located in the
plane of two principal axes with equal moments. An additional first integral in this case is a certain degree
four polynomial which does not come from any physical considerations. There is plenty of literature on
this beautiful dynamical system, although it seems that no real-life model was ever built. Computer
simulations can be found in the film “Kovalevskaya Top”, see https://av.tib.eu/media/10361. The
film is accompanied by a paper found at the bottom of the page.

Lecture 32: The Toda lattice

In this lecture we will discuss the Toda lattice, a multidimensional integrable system introduced by
Japanese physicist M. Toda in 1967 [19]. The Toda lattice consists of n unit mass particles on the real
line which interact via a repelling force of magnitude e−r where r is the distance between the particles.
It is also assumed that every particle only interacts with its nearest neighbours, i.e. the i’th particle
only interacts with the (i − 1)’st and (i + 1)’st. The configuration space of this system is Rn coordina-
tized by positions q1, . . . , qn of the particles. The phase space is therefore T ∗Rn = R2n, with coordinates
p1, . . . , pn, q1, . . . , qn, where pi’s are momenta or, which in this case is the same, velocities of the particles.
The Poisson structure on the phase space is canonical, i.e. {pi, qi} = 1 while other brackets of coordinate
functions vanish. The Hamiltonian function is

H =
1

2

n∑
i=1

p2i +
n−1∑
i=1

eqi−qi+1 ,

and the corresponding canonical Hamilton’s equations are

q̇i = {H, qi} =
∂H

∂pi
= pi, ṗi = {H, pi} = −∂H

∂qi
= −eqi−qi+1 + eqi−1−qi .

Note that the latter formula is technically not valid for i = 1 and i = n. However, we can make it work
for any i = 1, . . . , n by formally setting q0 = −∞, qn+1 = +∞.

The above Hamilton’s equations can be also rewritten in the Newtonian form, as

q̈i = −eqi−qi+1 + eqi−1−qi .

Remark 32.1. This version of the Toda lattice is known as finite, non-periodic Toda. M. Toda himself
initially considered a version with infinitely many particles indexed by i ∈ Z, as well as the periodic
version with Hamiltonian

H =
1

2

n∑
i=1

p2i +
n∑
i=1

eqi−qi+1 ,

where qn+1 is, by definition, equal to q1. Also note that Toda’s original interaction potential was e−r+r−1.
However, in the periodic and infinite cases the additional terms cancel out and do not affect the equations
of motion.
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We will establish the integrability of the Toda lattice through a Lax representation. A Lax form for
the Toda lattice was found by H. Flaschka [4], but the one that we will use is due to B. Kostant [8] (the
relation between these two Lax representations is explained in Exercise 32.7 below). Define the variables

ai = eqi−qi+1 , bi = −pi.

Then b1, . . . , bn determine the momenta p1, . . . , pn, while a1, . . . , an−1 determine coordinates q1, . . . , qn up
to simultaneous translation qi 7→ qi+c. Accordingly, a1, . . . , an−1, b1, . . . , bn can be regarded as coordinates
on the quotient of the phase space T ∗Rn by the R-action qi 7→ qi+c. Note also that the R-action preserves
the Hamiltonian, so the Toda lattice can be rewritten as a Hamiltonian system on the quotient T ∗Rn/R.
Explicitly, we have

ȧi =
d

dt
eqi−qi+1 = ai

d

dt
(qi − qi+1) = ai(pi − pi+1) = ai(bi+1 − bi)

and
ḃi = −ṗi = ai − ai−1.

So, on the quotient by the translation action, the Toda system rewrites as{
ȧi = ai(bi+1 − bi),
ḃi = ai − ai−1,

(41)

where, by definition, we set a0 = an = 0, in agreement with the convention q0 = −∞, qn+1 = +∞.

Proposition 32.2. The Toda system (41) is equivalent to the Lax equation L̇ = [L,A], where

L =


b1 1
a1 b2 1

. . .
. . .

. . .

an−2 bn−1 1
an−1 bn

 , (42)

and A is the strictly lower-triangular part of L:

A =


0
a1 0

. . .
. . .

an−2 0
an−1 0

 .

Proof. Write L as A+B, where

B =


b1 1

b2 1
. . .

. . .

bn−1 1
bn

 .
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Then

[L,A] = [B,A] =


a1

a1(b2 − b1) a2 − a1
. . .

. . .

an−2(bn−1 − bn−2) an−1 − an−2
an−1(bn − bn−1) −an−1

 ,

so the equation L̇ = [L,A] coincides with (41).

Corollary 32.3. The functions TrL, . . . ,TrLn are first integrals of the Toda system.

Exercise 32.4. Show that these functions are functionally independent. Hint: establish functional
independence on the submanifold a1 = · · · = an−1 = 0.

Thus, the Toda system has n independent first integrals, which is exactly the number needed for
complete integrability, provided that these first integrals Poisson commute. We will obtain Poisson com-
mutativity of those functions as a corollary of the Adler-Kostant-Symes theorem, which will be discussed
in the next lecture.

Remark 32.5. Note that the Toda system can be considered as a system either on the symplectic manifold
T ∗Rn, or on its quotient by the R-action. In both cases complete integrability requires n integrals. For
T ∗Rn/R this is so because its symplectic leaves are of dimension 2n− 2, so we need n− 1 first integrals
on the leaves, plus one Casimir function to distinguish between the leaves.

Exercise 32.6. Show that TrL, viewed as a function on T ∗Rn, is Noether’s integral corresponding to
the R-action, while on the quotient T ∗Rn/R it becomes a Casimir function. Also show that 1

2TrL2 is the
Hamiltonian.

Exercise 32.7. Show that if a time-dependent matrix L satisfies a Lax equation L′ = [L,A], and D is
another time-dependent matrix, then the matrix L̃ = DLD−1 also satisfies a Lax equation: L̃′ = [L̃, Ã].
Show that the Lax matrix (42) of the Toda lattice is conjugate to the matrix

L̃ =


b1

√
a1√

a1 b2
√
a2

. . .
. . .

. . .
√
an−2 bn−1

√
an−1√

an−1 bn


Hence show that L̃ satisfies a Lax equation L̃′ = [L̃, Ã] and find the corresponding matrix Ã. This is the
Lax representation found by Flaschka.

Lecture 33: The Adler-Kostant-Symes scheme

In this lecture we will describe a general approach which allows one to construct Hamiltonian systems
which possess the following properties:

• They can be written in the Lax form L̇ = [L,A]. As a corollary, functions of the form TrLk

(equivalently, coefficients of the characteristic polynomial of L) are preserved by the flow.

• Moreover, the functions TrLk pairwise Poisson commute.

80



If, in addition, the functions TrLk are independent and there are sufficiently many of them, then this
construction gives a completely integrable system. This construction is known as the Adler-Kostant-
Symes (or AKS) scheme. It was developed in the works of M. Adler [1], B. Kostant [8], and W. Symes [17].
We will present an r-matrix version of the AKS scheme, due to M. Semenov-Tyan-Shanskii [16]. After
discussing this general scheme we will show that the Toda lattice is a particular example and hence deduce
its complete integrability.

Definition 33.1. Let g be a Lie algebra. A linear operator r : g → g is a called a classical r-matrix if
the bracket

[x, y]r = [rx, y] + [x, ry]

is a Lie bracket, i.e. if it satisfies the Jacobi identity (this bracket is automatically bilinear and skew-
symmetric, so it is a Lie bracket if and only if it satisfies the Jacobi identity).

Example 33.2. For any Lie algebra g, the identity operator is a classical r-matrix. Indeed, for r = id
we have

[x, y]r = 2[x, y],

and the Jacobi identity for this bracket follows from the Jacobi identity for the [ , ] bracket.

Example 33.3 (Main example). Let g be a Lie algebra, and let g± be its Lie subalgebras such that, as
a vector space, g can be decomposed as g = g+⊕ g−. Let p± be the projectors to g± respectively, and let

r =
1

2
(p+ − p−).

Then r is a classical r-matrix. Indeed, denote x± = p±(x). Then

[x, y]r = [rx, y] + [x, ry] =
1

2
([x+ − x−, y+ + y−] + [x+ + x−, y+ − y−]) = [x+, y+]− [x−, y−].

The Jacobi identity for this bracket follows from the exercise below:

Exercise 33.4. Denote by gr the algebra g equipped with the r-bracket from this example. Show that
the mapping gr → g+⊕g− given by x 7→ (x+,−x−) is an isomorphism of algebras (not just vector spaces).
As a corollary, the r-bracket satisfies the Jacobi identity.

Example 33.5. Let g = gln be the Lie algebra of n× n matrices. Then we have a vector space decom-
position g = g+ ⊕ g− where g+ consists of strictly lower triangular matrices, and g− consists of upper
triangular matrices. As we will see below, the corresponding r-matrix is related to the Toda lattice.

Example 33.6. For g = gln we also have another decomposition g = g+⊕ g− where g+ = son consists of
skew-symmetric matrices, and g− consists of upper triangular matrices. This decomposition also arises
in the study of the Toda lattice.

Given an r-matrix on a Lie algebra g, we have two different Lie brackets in that algebra: the standard
bracket [ , ] and the r-bracket [ , ]r. Accordingly, on the dual space g∗ we obtain two Lie-Poisson brackets,
which we denote by { , } and { , }r. We will also use the notation π and πr for the corresponding Poisson
tensors, and XH , Xr

H for Hamiltonian vector fields with Hamiltonian H with respect to the two brackets.
Let also G and Gr be two Lie groups associated with g: one corresponding to the [ , ] bracket, and another
one corresponding to the [ , ]r bracket.

Theorem 33.7 (AKS theorem). Assume that g is a Lie algebra endowed with an r-matrix r. Then the
following statements hold.
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1. Assume that H ∈ C∞(g∗) is an invariant of the coadjoint action of G on g∗, i.e. a Casimir function
of the { , } bracket. Then the Hamiltonian vector field Xr

H of H with respect to the { , }r bracket is
given by

ẋ = −ad∗rdH(x)x, (43)

where ad∗ is the coadjoint action corresponding to the [ , ] bracket. If, in addition, g has an invariant
(with respect to the adjoint action of G) inner product, then, upon identification of g∗ and g by means
of that product the above equation takes the Lax form

ẋ = [x, rdH(x)].

2. All invariants of the coadjoint action of G, i.e. Casimirs of the { , } bracket, Poisson-commute with
respect to the { , }r bracket.

Remark 33.8. From the second statement it follows that the restrictions of invariants of the coadjoint
action to any symplectic leaf of the { , }r bracket Poisson commute with respect to that bracket. If,
in addition, the number of independent invariants is half the dimension of the leaf, then we obtain an
integrable system. As a Hamiltonian function, one can take any of the Poisson-commuting invariants.
The tori of that integrable system can be described as joint level sets of Casimirs of both brackets. In other
words, they are intersections of symplectic leaves of the { , } bracket and symplectic leaves of the { , }r
bracket. Here we use that symplectic leaves coincide with joint level sets of Casimirs. This is usually the
case for generic leaves.

Proof of Theorem 33.7. We begin with the first statement. The Poisson tensor of the bracket { , }r at
x ∈ g∗ is given by ξ 7→ − rad∗ξx, where rad∗ξ is the coadjoint operator corresponding to the [ , ]r bracket,
i.e. the negative dual of the operator radξ given by radξη = [ξ, η]r. Therefore, the Hamiltonian vector
field Xr

H is given by
ẋ = − rad∗dH(x)x. (44)

Further, we have
radξη = [ξ, η]r = [rξ, η] + [ξ, rη] = adrξη + (adξ ◦ r)(η), (45)

where ad is the adjoint operator for the [ , ] bracket, i.e. adξ(η) = [ξ, η]. Now, rewriting (45) as

radξ = adrξ + adξ ◦ r

and taking the negative dual of both sides, we get

rad∗ξ = ad∗rξ + r∗ ◦ ad∗ξ .

Plugging this into (44) we obtain

ẋ = −ad∗rdH(x)x− r
∗(ad∗dH(x)x).

But ad∗dH(x)x is the negative of the Hamiltonian vector field XH , and since H is a Casimir, that vector
field vanishes. This gives us the desired expression for the Hamiltonian vector field Xr

H of H with respect
to the { , }r bracket. Further, in case when we have an invariant inner product, we can identify g∗ with g
and ad∗ with ad, so we get

ẋ = −adrdH(x)x = −[rdH(x), x] = [x, rdH(x)],

as desired.
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To prove the second statement notice that by (43) the Hamiltonian vector field Xr
H belongs to the

image of the Poisson tensor π. Therefore, the trajectories of that vector field stay within the symplectic
leaves of the { , } bracket. So, any Casimir function H̃ of the { , } bracket is constant along trajectories of
the vector field Xr

H , which means that {H, H̃}r = 0 for arbitrary Casimirs H and H̃ of the { , } bracket,
q.e.d.

Exercise 33.9. Deduce the second part of the AKS theorem directly from the definition of the Lie-Poisson
bracket.

We now apply the AKS scheme to the Toda lattice. To that end, we consider an r-matrix on gln from
Example 33.5. As a Casimir of the Lie-Poisson bracket, we take the function

H =
1

2
TrL2.

Exercise 33.10. The differential of the function TrLk on gln is given by dTrLk = kLk−1. Here one
identifies gln and gl∗n by means of the form TrXY .

Thus, by the AKS theorem the Hamiltonian flow of H with respect to the r-bracket is

L̇ = [L, rdH(L)] =

[
L,

1

2
(L+ − L−)

]
,

where L± are, respectively, strictly lower triangular and upper triangular parts of L. Furthermore, this
can be rewritten as[

L,
1

2
(L+ − L−)

]
=

[
L,L+ −

1

2
(L+ + L−)

]
=

[
L,L+ −

1

2
L

]
= [L,L+].

We thus get an equation
L̇ = [L,L+] (46)

which is Hamiltonian with respect to the r-bracket with Hamiltonian function H = 1
2TrL2. Furthermore,

by the second part of the AKS theorem traces of powers of L Poisson-commute (with respect to the
r-bracket). This is almost what we need: equation (46) coincides with the Toda lattice equation when
restricted to matrices L of the form (42). What is however not clear is why the restrictions of traces of
powers of L to such special matrices still Poisson-commute. In fact, so far we have no relation between
the bracket on arbitrary matrices (the r-bracket) and the bracket on matrices of the form (42) (which
is obtained from the cotangent bundle bracket by means of reduction by translations). This relation is
explained in the following exercises:

Exercise 33.11. Let g be a Lie algebra. Prove that a vector subspace h ⊂ g∗ is a Poisson submanifold
(see Exercise 23.7) if if and only if its annihilator h⊥ is an ideal in g (i.e. [x, y] ∈ h⊥ for any x ∈ g and any
y ∈ h⊥). Furthermore, prove that an affine subspace a + h ⊂ g∗ (where a ∈ g∗ is fixed, and h ⊂ g∗ is a
vector subspace) is a Poisson submanifold if and only if the annihilator h⊥ is an ideal in g and, in addition,
the linear function a ∈ g∗ vanishes on the subspace [g, h⊥] (defined as the span of all commutators of the
form [x, y] where x ∈ g and y ∈ h⊥).

Exercise 33.12. Deduce that the affine subspace of matrices of the form (42) is a Poisson submanifold
of gln under the r-bracket (with r-matrix from Example 33.5). Further show that the restriction of the
r-bracket to that submanifold coincides with the bracket obtained from reduction T ∗Rn/R.

From the latter exercise it follows that the traces of powers are commuting first integrals of the Toda
lattice (with respect to the natural, “mechanical” bracket). As a corollary, the Toda lattice is a completely
integrable system.

Exercise 33.13. Deduce integrability of the Toda lattice using the Lax representation obtained in Ex-
ercise 32.7 and the r-matrix from Example 33.6.
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Lecture 34: Factorization theorem

In this lecture we will provide a general method, called factorization, to solve integrable systems con-
structed by the AKS scheme. We will consider the case of the Lie algebra gln with the r-matrix given by
the difference of two projections, but in fact a similar approach works in the general setting too.

Consider any vector space decomposition gln = g+ ⊕ g−, where g± are subalgebras. Then

r =
1

2
(p+ − p−),

where p± are projectors onto g±, is an r-matrix on gln. Therefore, by the AKS theorem any conjugation-
invariant function H on gln gives rise to a Lax flow

L̇ = [L, rdH(L)] = [L, (dH(L))+]. (47)

All such flows commute with each other. We want to obtain a solution of (47) with initial condition
L(0) = L0. Consider first the case of a more general Lax equation

L̇ = [L,A]. (48)

We look for a solution with initial condition L(0) = L0 in the form L(t) = U(t)−1L0U(t), where U(0) = Id
(cf. Exercise 27.5). Plugging this into the Lax equation, we see that U(t) must satisfy

U−1U ′ = A ⇔ U ′ = UA. (49)

Assuming that the dependence of A on time is already known, this is a system of linear differential
equations with time-dependent coefficients. Therefore, it has a solution with initial condition U(0) = Id,
which means that solutions of the Lax equation (48) can indeed be represented in the form

L(t) = U(t)−1L0U(t)

with U(t) being a solution to (49). We now apply this to solve (47). We need to find a time-dependent
matrix U(t) such that

U−1U ′ = (dH(L))+. (50)

To that end, consider the subgroups G± ⊂ GLn corresponding to the subalgebras g±. It can be shown
that since gln = g+ ⊕ g−, any element X ∈ GLn sufficiently close to the identity matrix has a unique
factorization of the form X = X+X−, where X± ∈ G± (for uniqueness we need to assume that G± are
connected). Moreover, the set of all elements of GLn admitting such a representation is dense in the
connected component of the identity (i.e. in the set of matrices with positive determinant).

Example 34.1. Let g+ be the subalgebra of strictly lower-triangular matrices, and g− be the subalgebra of
upper-triangular matrices. Then the corresponding subgroup G+ consists of lower-triangular unidiagonal
matrices, while G− consists of invertible upper-triangular matrices. The claim in this case is that almost
any matrix X (regardless of the sign of the determinanant) admits a decomposition X = X+X−, where
X+ is lower-triangular unidiagonal, and X− is upper triangular. This decomposition is closely related to
Gauss decomposition and can be constructed by Gauss elimination. Indeed, any matrix X can be brought
to an upper triangular form by elementary row operations, and for almost all matrices this can be done
without swapping rows. Such elementary operations without swapping rows correspond to multiplying X
by a lower-triangular unidiagonal matrix L from the left, so we have that LX = U is upper-triangular,
and X = L−1U is the desired factorization.
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Example 34.2. For g+ consisting of skew-symmetric matrices and g− consisting of upper-triangular
matrices we get the QR decomposition X = QR, where Q is orthogonal and R is upper-triangular. Such
a decomposition exists for any invertible matrix X and can be constructed by applying the Gram-Schmidt
orthogonalization process to columns of X.

Exercise 34.3. Let Q ⊂ GLn be a subgroup, and let q ⊂ gln be its Lie algebra, i.e. the tangent space
at the identity. Show that the tangent space TXQ, where X ∈ K consists of matrices of the form XY ,
where Y ∈ q. Hence show that the solution U(t) to the equation

U−1U ′ = X,

with X(t) ∈ q and U(0) = Id, belongs to the subgroup Q.

From this exercise it follows that the solution U to (50) belongs to the subgroup G+. To find the
solution, we rewrite (50) as

U−1U ′ = dH(L) +R− (51)

where R− is an element of g− whose precise nature is of no interest to us. Now recall that H is a
conjugation-invariant function.

Exercise 34.4. Prove that for any conjugation-invariant function H on gln one has

dH(U−1XU) = U−1dH(X)U.

Note that this result is immediate for H(X) = TrXk, because in that case we have

dH(U−1XU) = kTr (U−1XU)k−1 = U−1(kTrXk−1)U = U−1dH(X)U.

More generally, show that if H is an invariant of the coadjoint representation of a group G on the dual g∗

of its Lie algebra, then dH(Ad∗gx) = AdgdH(x) for any x ∈ g and g ∈ G.

Using this exercise, and denoting the constant matrix dH(L0) by X we rewrite (51) as

U−1U ′ = U−1XU +R− ⇔ U ′ −XU = UR−.

Now multiply the latter equation from the left by an integrating factor exp(−tX) to make the left hand
side a complete derivative. This gives V ′ = V R−, where V = exp(−tX)U . Now notice that since R− ∈ g−
and V (0) = Id, according to Exercise 34.3 we have V (t) ∈ G−. So,

exp(tX) = UV −1

where U ∈ G+ and V ∈ G−. This gives us a way to find U and thus the solution of the initial Lax
equation:

Theorem 34.5 (Factorization theorem). Consider the Lax equation

L̇ = [L, (dH(L))+],

where H is a conjugation invariant function on gln, and dH(L)+ is the projection of its differential onto
a subalgebra g+ along a complementary subalgebra g−. Then the solution to this equation with initial
condition L(0) = L0 is given by

L(t) = U(t)−1L0U(t) (52)

where U(t) is found from the factorization

exp(t · dH(L0)) = U(t)V (t)−1

with U(t) ∈ G+, V (t) ∈ G−. Here G± are the subgroups of GLn corresponding to the subalgebras g±.
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Remark 34.6. It follows from Exercise 34.4 that L0 commutes with dH(L0) which allows one to rewrite
the above solution formula as

L(t) = V (t)−1 exp(−tdH(L0))L0 exp(tdH(L0))V (t) = V (t)−1L0V (t).

Also note that while we were assuming in the derivation of the factorization formula that the Lie algebra
g is gln, a simple modification of the above argument works for any Lie algebra with an invariant inner
product, with conjugation in (52) replaced by the adjoint action. There is also a more general version of
the factorization theorem that applies for r-matrices not expressible as difference of two projectors [16].

Lecture 35: Asymptotic behavior of the Toda lattice

In this lecture we will use the factorization method to solve the Toda lattice equations for two particles.
As a result, we will see that the Toda lattice has very special asymptotic behavior, known as scattering.

For the sake of simplicity, we consider a special initial condition, namely we assume that both particles
are initially at rest: p1(0) = p2(0) = 0, on distance α from each other. Due to translation invariance of
the system we can further assume that the initial positions of particles are q2(0) = α/2 and q1(0) = −α/2.
Note also that the total momentum p1 + p2 is conserved (cf. Exercise 32.6), so

d

dt
(q1(t) + q2(t)) = p1(t) + p2(t) = p1(0) + p2(0) = 0,

which means that
q1(t) + q2(t) = q1(0) + q2(0) = 0,

i.e. for our special solution the position of the center of mass is also conserved (but it is not a conserved
quantity for the general solution!).

We now apply the factorization method to find the solution of Toda equations with given initial
conditions. Denote λ = e−α/2. Then the Lax matrix (42) at time t = 0 is given by

L0 =

(
0 1
λ2 0

)
.

According to the factorization theorem, we need to compute the matrix exp tL0 (note that for the Toda
Hamiltonian we have dH(L) = L). Since tL0 is a 2× 2 matrix, we have

exp tL0 = at · L0 + b · Id

for certain constants a, b ∈ R. The latter equation will still hold if we replace L0 with its eigenvalues ±λ,
so {

aλt+ b = eλt,

−aλt+ b = e−λt,

from where we find that

a =
sinhλt

λt
, b = coshλt,

and

exp tL0 =
sinhλt

λ
· L0 + coshλt · Id =

(
coshλt λ−1 sinhλt
λ sinhλt coshλt

)
.
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To bring this matrix to an upper-triangular form we need to add to the second row the first one multiplied
by −λ tanhλt. Therefore, in the factorization exp(tL0) = UV −1, where U is lower-triangular unidiagonal
and L is upper-triangular, we have

U(t) =

(
1 0

−λ tanhλt 1

)
.

We now find the solution of the Toda system using formula (52):

L(t) = U(t)−1L0U(t) =

(
λ tanhλt 1
λ2 sech2 λt −λ tanhλt

)
.

From this we find that the dependence of momenta of particles on time is given by

p1(t) = −λ tanhλt, p2(t) = λ tanhλt.

As for coordinates, we have
eq1−q2 = λ2 sech2 λt,

which, in view of the identity q1 + q2 = 0, gives

q1(t) = −α
2
− ln(coshλt), q2(t) =

α

2
+ ln(coshλt).

These expressions can of course be also found from the formulas for p1(t), p2(t) using integration and
initial conditions. A particular simple solution of the Toda lattice corresponding to α = 0 is given by

q1(t) = − ln(coshλt), q2(t) = ln(coshλt). (53)

Exercise 35.1. Derive this solution from the Toda lattice equations in a, b variables. Hint: eliminate
two out of three variables using conservation of energy and momentum.

We would now like to study the asymptotic behavior of the Toda lattice. First observe that the
velocities p1(t) = −λ tanhλt, p2(t) = λ tanhλt have finite limits as t → ±∞. In other words, for large
absolute value of t the particles in the Toda lattice move as if they do not interact. This is not too
surprising because

lim
t→±∞

(q2(t)− q1(t)) = +∞,

so for large absolute value of t the interaction force eq1−q2 is indeed weak. This type of asymptotically
free motion is known as scattering.

Another thing that we observe is that for t→ +∞ we have

lim
t→+∞

p1(t) = −λ, lim
t→+∞

p2(t) = +λ,

while for t→ −∞ we have
lim

t→−∞
p1(t) = +λ, lim

t→−∞
p2(t) = −λ.

This means two things. First, this observation provides a geometric meaning for the spectrum of the
Lax matrix L (and hence for the integrals of the Toda lattice which are symmetric functions of the
spectrum): the eigenvalues of L are asymptotic momenta (velocities) of the particles8. Second, we see

8In general the eigenvalues of L are equal to negative asymptotic momenta. In our case this does not matter because the
spectrum is symmetric with respect to the origin.
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Figure 22: Collision of elastic balls and the Toda lattice.

that the particles in the Toda lattice exchange momenta as they scatter. This means that the interaction
of particles in the Toda lattice for n = 2 is similar to a collision of two elastic balls moving along a
straight line: the balls also exchange momenta when they collide. Figure 22 shows two graphs. The
graph on the left shows position functions for two elastic balls of equal mass moving towards each other
with unit speeds and colliding at the origin. The graph on the right shows position functions for the
particular solution (53) of the Toda lattice with two particles. As one can see, the graphs look alike.
There is, however, one remarkable difference in the asymptotic behavior of the Toda lattice as compared
to elastic balls. Namely, in collision of elastic ball the trajectory of the second ball after the collision
exactly continues the trajectory of the first ball before the collision. In other words, the position function
of the first ball when t → +∞ is the same as the position function of the second one for t → −∞. For
the Toda lattice this is not the case. Indeed, the t → +∞ asymptote of the first particle trajectory
is parallel to the t → −∞ asymptote of the second particle trajectory, but these two lines are not the
same (Figure 23). This phenomenon is known as phase shift and is common for integrable systems with
scattering behavior.

Exercise 35.2. Compute the value of the phase shift for solution (53).

t

q

Figure 23: Asymptotes of particle trajectories in the Toda lattice.
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For general solutions of the Toda lattice with n particles one has the following result due to
J. Moser [14]:

Theorem 35.3. The motion in the finite non-periodic Toda lattice is asymptotically free. Furthermore,
if λ1 < · · · < λn are the eigenvalues of the Lax matrix, then the asymptotic velocities of particles are given
by p1 = −λ1, . . . , pn = −λn when t→ −∞ and p1 = −λn, . . . , pn = −λ1 when t→ +∞.

In other words, in process of scattering the i’th particle eventually exchanges its momentum with
particle n+ 1− i. Again, this is similar to what happens in a collision of n elastic balls (we assume that
collisions happen one by one and not simultaneously). However, in contrast to balls, the particles in the
Toda lattice exhibit a phase shift.

Exercise 35.4. Prove Moser’s theorem in the case of two particles. Hint: either write down the general
solution explicitly, or study the level sets of the energy function as the function of a1, b1, b2 on the plane
of the constant momentum b1 + b2 = const.
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