Problem 32: Index of a singular point of a gradient vector field

Theorem: In dimension two, $ind \leq 1$.

Proof:

$$ind = \frac{e-h}{2} + 1,$$

where e and h is the number of elliptic and hyperbolic sectors. For gradients, e = 0, QED

Loewner's cojecture. Consider the vector field $(\partial_x + i\partial_y)^n F(x, y)$, where F is a real smooth function. For example, if n = 1, this is ∇F , and if n = 2, the field is $(F_{xx} - F_{yy}, 2F_{xy})$.

Conjecture: The index of an isolated singular point of such field does not exceed n.

The n = 2 case implies the Caratéodory conjecture: a smooth surface in \mathbb{R}^3 diffeomorphic to the sphere has at least two distinct umbilic points.

The umbilic points of a convex surface are the conformal points of the Hamiltonian vector field of its support function $S^2 \rightarrow \mathbf{R}$, prompting

Conjecture: An area preserving diffeomorphism of a round S^2 possesses at least two distinct conformal points.

Problem 34: Curve $y = x^3$ in \mathbb{RP}^2

This curve is projectively self-dual: it has a cusp at infinity, dual to its inflection point at the origin.

Definition: Let $\gamma \subset \mathbf{RP}^2$ be a curve, perhaps with cusps, and $\gamma^* \subset (\mathbf{RP}^2)^*$ be the dual curve. Then γ is projectively self-dual if there is a projective map $\varphi : \mathbf{RP}^2 \to (\mathbf{RP}^2)^*$ that takes γ to γ^* .

An obvious example: conics. A complete description of self-dual curves is not known (unlike self-dual polygons); it is Problem No 1994-17 in Arnold's book of problems.

Example: Radon curve. For example, p = 3, q = 3/2

$$x^{p} + y^{p} = 1$$
 for $xy > 0$, $x^{q} + y^{q} = 1$ for $xy < 0$, with $\frac{1}{p} + \frac{1}{q} = 1$.

Problem 42: Are the altitudes of a triangle concurrent?

Spherical proof:

 $(A \times B) \times C + (B \times C) \times A + (C \times A) \times B = 0,$

the Jacobi identity in so(3)!

Likewise in H^2 , with the Lie algebra $sl(2, \mathbf{R})$ (but not in \mathbf{R}^2).

T. Tomihisa: the dual Pappus theorem as an identity in sl(2) $[F_1, [[F_2, F_3], [F_4, F_5]]] + [F_3, [[F_2, F_5], [F_4, F_1]]] +$ $[F_5, [[F_2, F_1], [F_4, F_3]]] = 0.$

Skewer (common normal) variant [Petersen-Hjelmslev-Morley, 1897]: Given three lines a, b, c in \mathbb{R}^3 (or S^3 , or H^3), the lines

S(S(a,b),c), S(S(b,c),a), and S(S(c,a),b)

share a skewer.

Equivalently, the common normals of the opposite sides of a rectangular hexagon have a common normal.

References

P. Albers, S. Tabachnikov. *On conformal points of area preserving maps and related topics.* J. Geom. Physics 180, Oct. 2022, 104644.

D. Fuchs, S. Tabachnikov. *Self-dual polygons and self-dual curves*. Funct. Analysis and Other Math. 2 (2009), 203-220.

F. Morley. *On a regular rectangular configuration of ten lines.* Proc. London Math. Soc. s1-29 (1897), 670-673.

T. Tomihisa. *Geometry of projective plane and Poisson structure.* J. Geom. Phys. 59 (2009), 673-684.

F. Aicardi. *Projective geometry from Poisson algebras.* J. Geom. Phys. 61 (2011),1574-1586.

S. Tabachnikov. Skewers. Arnold Math. J. 2 (2016), 171-193.