Problem 32: Index of a singular point of a gradient vector field
Theorem: In dimension two, ind ≤ 1.

Proof:

$$
i n d=\frac{e-h}{2}+1,
$$

where e and h is the number of elliptic and hyperbolic sectors.
For gradients, $e=0$, QED

Loewner's cojecture. Consider the vector field $\left(\partial_{x}+i \partial_{y}\right)^{n} F(x, y)$, where F is a real smooth function. For example, if $n=1$, this is ∇F, and if $n=2$, the field is $\left(F_{x x}-F_{y y}, 2 F_{x y}\right)$.

Conjecture: The index of an isolated singular point of such field does not exceed n.

The $n=2$ case implies the Caratéodory conjecture: a smooth surface in \mathbf{R}^{3} diffeomorphic to the sphere has at least two distinct umbilic points.

The umbilic points of a convex surface are the conformal points of the Hamiltonian vector field of its support function $S^{2} \rightarrow \mathbf{R}$, prompting

Conjecture: An area preserving diffeomorphism of a round S^{2} possesses at least two distinct conformal points.

Problem 34: Curve $y=x^{3}$ in RP^{2}
This curve is projectively self-dual: it has a cusp at infinity, dual to its inflection point at the origin.

Definition: Let $\gamma \subset \mathbf{R P}^{2}$ be a curve, perhaps with cusps, and $\gamma^{*} \subset\left(\mathbf{R P}^{2}\right)^{*}$ be the dual curve. Then γ is projectively self-dual if there is a projective map $\varphi: \mathbf{R P}^{2} \rightarrow\left(\mathbf{R P}^{2}\right)^{*}$ that takes γ to γ^{*}.

An obvious example: conics. A complete description of self-dual curves is not known (unlike self-dual polygons); it is Problem No 1994-17 in Arnold's book of problems.

Example: Radon curve. For example, $p=3, q=3 / 2$

$x^{p}+y^{p}=1$ for $x y>0, x^{q}+y^{q}=1$ for $x y<0$, with $\frac{1}{p}+\frac{1}{q}=1$.

Problem 42: Are the altitudes of a triangle concurrent?

Spherical proof:

$$
(A \times B) \times C+(B \times C) \times A+(C \times A) \times B=0,
$$

the Jacobi identity in so(3)!

Likewise in H^{2}, with the Lie algebra $s l(2, \mathbf{R})$ (but not in \mathbf{R}^{2}).
T. Tomihisa: the dual Pappus theorem as an identity in $\operatorname{sl}(2)$

$$
\begin{array}{r}
{\left[F_{1},\left[\left[F_{2}, F_{3}\right],\left[F_{4}, F_{5}\right]\right]\right]+\left[F_{3},\left[\left[F_{2}, F_{5}\right],\left[F_{4}, F_{1}\right]\right]\right]+} \\
{\left[F_{5},\left[\left[F_{2}, F_{1}\right],\left[F_{4}, F_{3}\right]\right]\right]=0 .}
\end{array}
$$

Skewer (common normal) variant [Petersen-Hjelmslev-Morley, 1897]: Given three lines a, b, c in \mathbf{R}^{3} (or S^{3}, or H^{3}), the lines

$$
S(S(a, b), c), S(S(b, c), a), \text { and } S(S(c, a), b)
$$

share a skewer.

Equivalently, the common normals of the opposite sides of a rectangular hexagon have a common normal.

References

P. Albers, S. Tabachnikov. On conformal points of area preserving maps and related topics. J. Geom. Physics 180, Oct. 2022, 104644.
D. Fuchs, S. Tabachnikov. Self-dual polygons and self-dual curves. Funct. Analysis and Other Math. 2 (2009), 203-220.
F. Morley. On a regular rectangular configuration of ten lines. Proc. London Math. Soc. s1-29 (1897), 670-673.
T. Tomihisa. Geometry of projective plane and Poisson structure. J. Geom. Phys. 59 (2009), 673-684.
F. Aicardi. Projective geometry from Poisson algebras. J. Geom. Phys. 61 (2011),1574-1586.
S. Tabachnikov. Skewers. Arnold Math. J. 2 (2016), 171-193.

