The Root Datum of $\text{SO}_{2n+1}(\mathbb{K})$

Jay Taylor

Let $\mathbb{K} = \overline{\mathbb{F}}_p$ for some odd prime $p > 0$. We define the special orthogonal group to be $\text{SO}_{2n+1}(\mathbb{K}) = \{X \in \text{Mat}_{2n+1}(\mathbb{K}) \mid X^T Q_{2n+1} X = Q_{2n+1} \text{ and } \det(X) = 1\}$, where we define the orthogonal matrix Q_k, (for any natural number $k > 0$), to be

$$Q_k = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \in \text{Mat}_k(\mathbb{K}).$$

Consider the algebraic group $\text{GL}_k(\mathbb{K})$ then we have a standard BN-pair given by the subgroup of all upper triangular matrices $B_k(\mathbb{K}) \leqslant \text{GL}_k(\mathbb{K})$ and the subgroup of all monomial matrices $N_k(\mathbb{K}) \leqslant \text{GL}_k(\mathbb{K})$. Also recall that we have a semidirect product decomposition of the Borel subgroup $B_k(\mathbb{K}) = U_k(\mathbb{K})T_k$ where $U_k(\mathbb{K})$ is the subgroup of uni-upper triangular matrices and T_k is the maximal torus of diagonal matrices. By [Gec03, Summary 1.7.9] we have that $B = B_{2n+1}(\mathbb{K}) \cap \text{SO}_{2n+1}(\mathbb{K})$ and $N = N_{2n+1}(\mathbb{K}) \cap \text{SO}_{2n+1}(\mathbb{K})$ will form a BN-pair for $\text{SO}_{2n+1}(\mathbb{K})$. Furthermore we will have $B = UT$ where $T = B \cap N$ is a maximal torus of diagonal matrices and $U = U_{2n+1}(\mathbb{K}) \cap \text{SO}_{2n+1}(\mathbb{K})$.

We can express a matrix $X \in B_{2n+1}(\mathbb{K})$ as

$$X = \begin{pmatrix} A & v & B \\ 0 & x & w \\ 0 & 0 & C \end{pmatrix},$$

where $B \in \text{Mat}_n(\mathbb{K})$, $A, C \in B_n(\mathbb{K})$, v is a column vector, w a row vector and $x \in \mathbb{K}$. We now wish to find conditions such that X lies in B. For this to be true we must have X satisfies the defining equations of the special orthogonal group, namely $X^T Q_{2n+1} X = Q_{2n+1}$ and $\det(X) = 1$. Considering the first equation we have

$$X^T Q_{2n+1} X = \begin{pmatrix} A^T & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A^T \end{pmatrix} \begin{pmatrix} 0 & 0 & Q_n \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} A & v & B \\ 0 & x & w \\ 0 & 0 & C \end{pmatrix}.$$

$$= \begin{pmatrix} 0 & 0 & A^T Q_n \\ 0 & x & v^T Q_n \\ C^T Q_n & w^T & B^T Q_n \end{pmatrix} \begin{pmatrix} A & v & B \\ 0 & x & w \\ 0 & 0 & C \end{pmatrix}.$$

$$= \begin{pmatrix} 0 & 0 & A^T Q_n C \\ 0 & x^2 & xw + v^T Q_n C \\ C^T Q_n A & C^T Q_n v + x w^T & C^T Q_n B + w^T w + B^T Q_n C \end{pmatrix}.$$
Therefore if $X^T Q_{2n+1} X = Q_{2n+1}$ we must have the following equations are satisfied

\[A^T Q_n C = Q_n, \]
\[x^2 = 1, \]
\[xw + v^T Q_n C = 0, \]
\[C^T Q_n B + w^T w + B^T Q_n C = 0. \]

From eq. (2) we can deduce immediately that $x = \pm 1$ and from eq. (1) that $C = Q_n(A^{-1})^T Q_n$. Using eq. (3) we get

\[v^T = -xwC^{-1}Q_n \Rightarrow v = -xQ_n(C^{-1})^T w^T, \]
\[\Rightarrow v = -xQ_n(Q_nAQ_n)w^T, \]
\[\Rightarrow v = -xAQ_nw^T. \]

Finally we can rewrite eq. (4) as

\[C^T Q_n B + B^T Q_n C = -w^T w \Rightarrow (Q_nA^{-1})Q_n B + B^T Q_n(Q_n(A^{-1})^T Q_n) = -w^T w, \]
\[\Rightarrow Q_nA^{-1}B + B^T(A^{-1})^T Q_n = -w^T w, \]
\[\Rightarrow B = AQ_nS, \]

where $S + S^T = -w^T w$. Considering the equation $\det(X) = 1$ we have

\[\det(X) = \det(A)x \det(C) = x \det(A) \det((A^{-1})^T) \det(Q_n)^2 = x \]

and so $x = 1$. By these calculations we have our Borel subgroup B is of the form

\[B = \left\{ \begin{pmatrix} A & v & AQ_nS \\ 0 & 1 & w \\ 0 & 0 & Q_n(A^{-1})^T Q_n \end{pmatrix} \middle| S \in \text{Mat}_n(\mathbb{K}) \text{ with } S + S^T = -w^T w, \quad v := -AQ_nw^T \text{ and } A \in B_n(\mathbb{K}) \right\}. \]

(5)

It’s clear from our calculation of the matrices in B that we also have

\[U = \left\{ \begin{pmatrix} A & v & AQ_nS \\ 0 & 1 & w \\ 0 & 0 & Q_n(A^{-1})^T Q_n \end{pmatrix} \middle| S \in \text{Mat}_n(\mathbb{K}) \text{ with } S + S^T = -w^T w, \quad v := -AQ_nw^T \text{ and } A \in U_n(\mathbb{K}) \right\}. \]

(6)

We also want to determine the subgroup N. Assume $X \in N_{2n+1}(\mathbb{K})$ then X is a monomial matrix which can be expressed as

\[X = \sum_{i=-n}^{n} x_{i,\sigma(i)} E_{i,\sigma(i)} \quad \Rightarrow \quad X^T = \sum_{i=-n}^{n} x_{i,\sigma(i)} E_{\sigma(i),i}, \]
for some \(0 \neq x_{i,\sigma(i)} \in \mathbb{K}\) and \(\sigma \in S_{2n+1}\). Note that we think of \(S_{2n+1}\) as permutations on the set \(\{-n, \ldots, -1, 0, 1, \ldots, n\}\) instead of the usual \(\{1, \ldots, 2n + 1\}\) and \(E_{i,j}\) is an elementary matrix such that we index the rows, from top to bottom, and the columns, from left to right, by \(-n, \ldots, -1, 0, 1, \ldots, n\). We can also express the matrix \(Q_{2n+1}\) as

\[
Q_{2n+1} = \sum_{i=-n}^{n} E_{i,-i}.
\]

Then for \(X\) to be an element of \(N\) we must have \(X^T Q_{2n+1} X = Q_{2n+1}\) and \(\det(X) = 1\). So, examining the first equation we have

\[
X^T Q_{2n+1} X = \left(\sum_{i=-n}^{n} x_{i,\sigma(i)} E_{\sigma(i),i} \right) \left(\sum_{j=-n}^{n} E_{j,-j} \right) \left(\sum_{k=-n}^{n} x_{k,\sigma(k)} E_{k,\sigma(k)} \right),
\]

\[
= \sum_{i,j,k=-n}^{n} x_{i,\sigma(i)} x_{k,\sigma(k)} E_{\sigma(i),i} E_{j,-j} E_{k,\sigma(k)}.
\]

We only get non-zero terms when \(i = j\) and \(-j = k \Rightarrow k = -i\)

\[
= \sum_{i=-n}^{n} x_{i,\sigma(i)} x_{-i,\sigma(-i)} E_{\sigma(i),\sigma(-i)}.
\]

We now compare this to \(Q_{2n+1}\). If \(\sigma\) does not send the pair \((i, -i)\) to a pair of the same form then we must have

\[
x_{i,\sigma(i)} x_{-i,\sigma(-i)} = 0 \Rightarrow x_{i,\sigma(i)} = 0 \text{ or } x_{-i,\sigma(-i)} = 0.
\]

However these entries of the matrix were chosen to be non-zero and so we must have

\[
\sigma(i) = j \iff \sigma(-i) = -j,
\]

for \(-n \leq i, j \leq n\). Note that this property clearly implies that \(\sigma(0) = 0\). We therefore define \(W \leq S_{2n+1}\) to be the subgroup of permutations which permute the unordered pairs \((1, -1), \ldots, (n, -n)\). Hence \(W\) is all permutations of the \(n\) pairs together with a collection of sign changes, so we will have \(W \cong \mathbb{Z}_2 \wr S_n\).

If \(\sigma \in W\) then we must have \(x_{-i,\sigma(-i)} = x_{i,\sigma(i)}^{-1}\). In particular \(x_{0,0} = x_{0,0}^{-1} \Rightarrow x_{0,0} = \pm 1\). Now examining \(\det(X) = 1\) we can see that

\[
\det(X) = \text{sgn}(\sigma) \prod_{i=-n}^{n} x_{i,\sigma(i)} = \text{sgn}(\sigma) x_{0,0} = \pm \text{sgn}(\sigma).
\]

So, if \(\text{sgn}(\sigma) = 1\) then \(x_{0,0} = 1\) and if \(\text{sgn}(\sigma) = -1\) then \(x_{0,0} = -1\). So, we have
\[
N = \left\{ \sum_{i=0}^{n} x_{i,\sigma(i)} E_{i,\sigma(i)} \bigg| \sigma \in W, x_{i,\sigma(i)} \in \mathbb{K} \text{ such that } x_{-i,\sigma(-i)} = x_{\sigma(i)}^{-1} \text{ for } i \neq 0 \right. \\
\quad \quad \text{and } x_{0,0} = \text{sgn}(\sigma) \right\}.
\]

Note that by taking the intersection of \(B \) and \(N \) we see \(T \) is the subgroup of all diagonal matrices which will be of the form

\[
\text{diag}(t_{-n}, \ldots, t_{-1}, 1, t_{-1}^{-1}, \ldots, t_{-n}^{-1}),
\]

for some \(t_1, \ldots, t_n \in \mathbb{K}^\times \).

Roots and Root Subgroups

Note for background information on how roots are constructed see [Car93, Section 1.9]. Now we have determined the \(BN \)-pair for \(\text{SO}_{2n+1}(\mathbb{K}) \) we can go about determining the root datum. We first want to find the minimal proper subgroups of \(U \) which are normalised by \(T \). These will be connected unipotent subgroups of dimension 1 and so are isomorphic to the additive group \(\mathbb{K}^+ \). Each such subgroup, called a *root subgroup*, will give rise to a positive root of \(\text{SO}_{2n+1}(\mathbb{K}) \).

Recall the format of a matrix in \(U \) specified in eq. (6). We will find the 1-dimensional subgroups of \(U \) by setting as many parts of \(U \) equal to zero and then checking for stability under conjugation by the torus. Consider \(X \in U \) such that \(A \) is the \(n \times n \) identity matrix and \(w \) is the zero row vector. Then our matrix \(X \) has the form

\[
X = \begin{pmatrix}
I_n & 0 & Q_n S \\
0 & 1 & 0 \\
0 & 0 & I_n
\end{pmatrix},
\]

where \(S \in \text{Mat}_n(\mathbb{K}) \) is such that \(S = -S^T \). Note that \(S = -S^T \) automatically implies that all the diagonal entries of \(S \) are zero. We fix a minimal number of non-zero entries in \(S \). Setting such entries equal to \(\pm 1 \) then we can express \(X \) as

\[
X = I_{2n+1} + E_{-j,i} - E_{-i,j},
\]

for some fixed \(1 \leq i, j \leq n \) with \(i \neq j \).

Let \(t = \text{diag}(t_{-n}, \ldots, t_{-1}, 1, t_1, \ldots, t_n) \in T \) be a diagonal matrix such that \(t_r = t_r^{-1} \) for all \(1 \leq r \leq n \). We wish to now calculate the conjugate of \(X \) by \(t \).

\[
tXt^{-1} = \left(\sum_{k=-n}^{n} t_k E_{k,k} \right) (I_{2n+1} + E_{-j,i} - E_{-i,j}) \left(\sum_{\ell=-n}^{n} t_{\ell}^{-1} E_{\ell,\ell} \right),
\]

\[
= I_{2n+1} + \sum_{k,\ell=-n}^{n} t_k t_{\ell}^{-1} E_{k,k} E_{-j,i} E_{\ell,\ell} - t_k t_{\ell}^{-1} E_{k,k} E_{-i,j} E_{\ell,\ell},
\]

\[
= I_{2n+1} + t_{-j} t_i^{-1} E_{-j,i} - t_{-i} t_j^{-1} E_{-i,j},
\]
\[I_{2n+1} + t_{-i} t_{-j} (E_{-j,i} - E_{-i,j}). \]

Hence for each fixed \(1 \leq i < j \leq n \) the subgroup

\[X_\alpha = \{ I_{2n+1} + \kappa (E_{-j,i} - E_{-i,j}) \mid \kappa \in \mathbb{K}^+ \} \]

is a unique root subgroup of \(U \) which is normalised by the torus. Note that we impose the condition \(i < j \) because for \(j < i \) we get an identical list of subgroups. The corresponding root to \(X_\alpha \) is given by

\[\alpha(t) = t_{-i} t_{-j}. \]

We will now try and construct another collection of minimal subgroups. We continue to consider \(X \in U \), as specified in eq. (6), and let \(A = I_n \). However we let \(w \) be a row vector such that it has a single non-zero entry in the \(i \)th position, for some fixed \(1 \leq i \leq n \). Then our matrix will have the form

\[
X = \begin{pmatrix} I_n & v & Q_n S \\ 0 & 1 & w \\ 0 & 0 & I_n \end{pmatrix}.
\]

Now \(v = -Q_n w^T \), which means \(v \) is column vector with only one non-zero entry in the \(-i\)th position. We want to consider the possible entries in the matrix \(Q_n S \) but we must first consider the condition \(S + S^T = -w^T w \). We have \(w \) contains only one non-zero entry, say \(w_i \), in the \(i \)th position and hence the \(n \times n \) matrix \(-w^T w \) will have only one non-zero entry \(-w_i^2\) in the \((i, i)\)th position. So we can consider \(S \) to be the matrix such that all entries are zero, except the \((i, i)\)th entry which is \(-\frac{1}{2} w_i^2\). Therefore we can express \(X \) as

\[
X = I_{2n+1} + w_i (E_{0,i} - E_{-i,0}) - \frac{1}{2} w_i^2 E_{-i,i}.
\]

Let \(t = \text{diag}(t_{-n}, \ldots, t_{-1}, 1, t_1, \ldots, t_n) \in T \) be a diagonal matrix such that \(t_r = t_{-r}^{-1} \) for all \(1 \leq r \leq n \). We wish to now calculate the conjugate of \(X \) by \(t \) but to simplify matters we will choose \(w_i = 1 \).

\[
t X t^{-1} = \left(\sum_{k=-n}^{n} t_k E_{k,k} \right) \left(I_{2n+1} + E_{0,i} - E_{-i,0} - \frac{1}{2} E_{-i,i} \right) \left(\sum_{\ell=-n}^{n} t_\ell^{-1} E_{\ell,\ell} \right),
\]

\[
= I_{2n+1} + \sum_{k,\ell=-n}^{n} t_k t_\ell^{-1} E_{k,k} E_{0,i} E_{\ell,\ell} - t_k t_\ell^{-1} E_{k,k} E_{-i,0} E_{\ell,\ell} - \frac{1}{2} t_k t_\ell^{-1} E_{k,k} E_{-i,i} E_{\ell,\ell},
\]

\[
= I_{2n+1} + t_i^{-1} E_{0,i} - t_i E_{-i,0} - \frac{1}{2} t_i t_i^{-1} E_{-i,i},
\]

\[
= I_{2n+1} + t_{-i} (E_{0,i} - E_{-i,0}) - \frac{1}{2} t_i^2 E_{-i,i}.
\]
Hence for each fixed $1 \leq i \leq n$ the subgroup

$$X_\beta = \left\{ I_{2n+1} + \kappa(E_{0,i} - E_{-i,0}) - \frac{1}{2}\kappa^2 E_{-i,i} \mid \kappa \in \mathbb{K}^+ \right\}$$

is a unique root subgroup of U which is normalised by the torus. The corresponding root to X_β is given by

$$\beta(t) = t_{-i}.$$

We aim to finally construct the last family of minimal subgroups. We continue to consider $X \in U$, as specified in eq. (6) but instead let S be the zero matrix and w the zero vector. Then our matrix will have the form

$$X = \begin{pmatrix} A & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & Q_n(A^{-1})^T Q_n \end{pmatrix}.$$

We can choose A to have precisely one non-zero entry. Taking this entry to be 1 we can express X as

$$X = I_{2n+1} + E_{-j,i} - E_{i,j},$$

for some fixed $1 \leq i < j \leq n$. Note that we require $i < j$ as A is an $n \times n$ uni-upper triangular matrix.

Let $t = \text{diag}(t_{-n}, \ldots, t_{-1}, 1, t_1, \ldots, t_n) \in T$ be a diagonal matrix such that $t_r = t_{-r}^{-1}$ for all $1 \leq r \leq n$. We wish to now calculate the conjugate of X by t.

$$tXt^{-1} = \left(\sum_{k=-n}^{n} t_k E_{k,k} \right) (I_{2n+1} + E_{-j,i} - E_{i,j}) \left(\sum_{\ell=-n}^{n} t_{\ell}^{-1} E_{\ell,\ell} \right),$$

$$= I_{2n+1} + \sum_{k,\ell=-n}^{n} t_k t_{\ell}^{-1} E_{k,k} E_{-j,-i} E_{\ell,\ell} - t_k t_{\ell}^{-1} E_{k,k} E_{i,j} E_{\ell,\ell},$$

$$= I_{2n+1} + t_{-j} t_{-i}^{-1} E_{-j,-i} - t_j t_i^{-1} E_{i,j},$$

$$= I_{2n+1} + t_{-j} t_i (E_{-j,-i} - E_{i,j}).$$

Hence for each fixed $1 \leq i < j \leq n$ the subgroup

$$X_\gamma = \{ I_{2n+1} + \kappa(E_{-j,-i} - E_{i,j}) \mid \kappa \in \mathbb{K}^+ \}$$

is a unique root subgroup of U which is normalised by the torus. The corresponding root to X_γ is given by

$$\gamma(t) = t_{-i} t_j.$$
A Better Description of the Roots

We wish to give a more uniform description of the roots that we have discovered in the previous section. We start by introducing so called co-ordinate maps on the torus. Let \(t = \text{diag}(t_{-n}, \ldots, t_{-1}, t_1, \ldots, t_n) \in T \) be a typical element of the maximal torus. Then we define algebraic group homomorphisms \(\varepsilon_i : T \to \mathbb{K}^\times \) by

\[
\varepsilon_i(t) = t_{-i},
\]

for all \(1 \leq i \leq n \). Therefore we can describe the roots \(\alpha, \beta \) and \(\gamma \) by

\[
\alpha = \varepsilon_i + \varepsilon_j \quad \beta = \varepsilon_i \quad \gamma = \varepsilon_j - \varepsilon_i,
\]

where \((\varepsilon_i + \varepsilon_j)(t) = \varepsilon_i(t)\varepsilon_j(t)\) and \((\varepsilon_j - \varepsilon_i)(t) = \varepsilon_j(t)\varepsilon_i(t)^{-1}\). Hence we can describe the set of positive roots for \(SO_{2n+1}(\mathbb{K}) \) as the set

\[
\Phi^+ = \{\varepsilon_i, \varepsilon_j \pm \varepsilon_i \mid 1 \leq i \leq n \text{ and } i < j \leq n\}.
\]

Note also that a simple system of roots can be given by the set

\[
\Delta = \{\varepsilon_n, \varepsilon_{i+1} - \varepsilon_i \mid 1 \leq i < n\}.
\]

The Coroots

We know that to each root \(\alpha : T \to \mathbb{K}^\times \) there is a corresponding coroot \(\alpha^\vee : \mathbb{K}^\times \to T \) such that, for all \(\lambda \in \mathbb{K}^\times \), we have \((\alpha \circ \alpha^\vee)(\lambda) = \lambda^2\). We define maps \(\varepsilon_i^\vee : \mathbb{K}^\times \to T \) for all \(1 \leq i \leq n \) by

\[
\varepsilon_i^\vee(\lambda) = \text{diag}(1, \ldots, 1, \lambda, 1, \ldots, 1),
\]

where \(\lambda \in \mathbb{K}^\times \) is in the \(i \)-th entry of the diagonal. Then it’s easy to check that the coroots are given by

\[
\alpha^\vee = \varepsilon_i^\vee + \varepsilon_j^\vee \quad \beta^\vee = 2\varepsilon_i^\vee \quad \gamma^\vee = \varepsilon_j^\vee - \varepsilon_i^\vee,
\]

where \((\varepsilon_i^\vee + \varepsilon_j^\vee)(\lambda) = \varepsilon_i^\vee(\lambda)\varepsilon_j^\vee(\lambda)\) and \((2\varepsilon_i^\vee)(\lambda) = \varepsilon_i^\vee(\lambda)^2\). Recall that the coroots, which we denote \(\Phi^\vee \), also form a root system and hence we can describe the positive coroots as the set

\[
\Phi^{\vee+} = \{2\varepsilon_i^\vee, \varepsilon_i^\vee \pm \varepsilon_j^\vee \mid 1 \leq j < i \leq n\}.
\]

References
