COMPUTING CHARACTER TABLES OF FINITE GROUPS

Jay Taylor
(Università degli Studi di Padova)
Symmetry
Symmetry

Chemistry
Symmetry

Chemistry

Biology
Symmetry

Chemistry

Biology

Physics
Symmetry

Groups

Symmetry

Chemistry

Biology

Physics
Symmetry

Chemistry

Biology

Physics

Number Theory

Topology

Algebraic Geometry

Groups

Symmetry

Chemistry

Biology

Physics
DEFINITION
A group is a pair \((G, \star)\) with \(G\) a set and \(\star : G \times G \rightarrow G\) a binary operation such that:
DEFINITION

A group is a pair \((G, \star)\) with \(G\) a set and \(\star : G \times G \to G\) a binary operation such that:

1. there exists an element \(e \in G\) such that \(x \star e = e \star x = x\) for all \(x \in G\)
DEFINITION

A group is a pair \((G, \star)\) with \(G\) a set and \(\star : G \times G \to G\) a binary operation such that:

1. there exists an element \(e \in G\) such that \(x \star e = e \star x = x\) for all \(x \in G\)

2. for every \(g \in G\) there exists an element \(g^{-1} \in G\) such that \(g \star g^{-1} = g^{-1} \star g = e\)
A group is a pair \((G, \star)\) with \(G\) a set and \(\star : G \times G \to G\) a binary operation such that:

1. there exists an element \(e \in G\) such that \(x \star e = e \star x = x\) for all \(x \in G\)

2. for every \(g \in G\) there exists an element \(g^{-1} \in G\) such that \(g \star g^{-1} = g^{-1} \star g = e\)

3. \(a \star (b \star c) = (a \star b) \star c\) for all \(a, b, c \in G\).
A group is a pair (G, \star) with G a set and $\star : G \times G \to G$ a binary operation such that:

1. there exists an element $e \in G$ such that $x \star e = e \star x = x$ for all $x \in G$

2. for every $g \in G$ there exists an element $g^{-1} \in G$ such that $g \star g^{-1} = g^{-1} \star g = e$

3. $a \star (b \star c) = (a \star b) \star c$ for all $a, b, c \in G$.

Examples

- $(\mathbb{Z}, +)$ with $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \}$,
DEFINITION

A group is a pair \((G, \star)\) with \(G\) a set and \(\star : G \times G \to G\) a binary operation such that:

1. there exists an element \(e \in G\) such that \(x \star e = e \star x = x\) for all \(x \in G\)

2. for every \(g \in G\) there exists an element \(g^{-1} \in G\) such that \(g \star g^{-1} = g^{-1} \star g = e\)

3. \(a \star (b \star c) = (a \star b) \star c\) for all \(a, b, c \in G\).

Examples

- \((\mathbb{Z}, +)\) with \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}\),
- \((\mathbb{R}^\times, \times)\) with \(\mathbb{R}^\times = \mathbb{R} \setminus \{0\}\) where \(\mathbb{R}\) denote the real numbers.
DIHEDRAL GROUPS

1 2

3 4

1 2

1 2

1 2
DIHEDRAL GROUPS
DIHEDRAL GROUPS
DIHEDRAL GROUPS

4

1

3

2
DIHEDRAL GROUPS

4

1

3

2

90°
DIHEDRAL GROUPS
DIHEDRAL GROUPS

4
1

3
2

90°
DIHEDRAL GROUPS
DIHEDRAL GROUPS
DIHEDRAL GROUPS

2
3
4

90°
DIHEDRAL GROUPS
DIHEDRAL GROUPS

1

4

3

2

90°

1
DIHEDRAL GROUPS

180°
DIHEDRAL GROUPS
DIHEDRAL GROUPS

3

4

2

1

90°

180°
DIHEDRAL GROUPS

1 4
2 3

90° 180°
DIHEDRAL GROUPS
DIHEDRAL GROUPS

1 4

2 3

90° 180°
DIHEDRAL GROUPS
DIHEDRAL GROUPS

1

90°

180°
DIHEDRAL GROUPS

2 3
1 4

270°
DIHEDRAL GROUPS
DIHEDRAL GROUPS

1. 90°
2. 180°
3. 270°
DIHEDRAL GROUPS

a

b

180°

90°

270°
DIHEDRAL GROUPS

a

b

ab

180°

90°

270°
DIHEDRAL GROUPS

- **a**
- **b**
- **ab**
- **aba**

- 180°
- 270°
- 90°
DIHEDRAL GROUPS

a

b

ab

aba

abab

180°

90°

270°
DIHEDRAL GROUPS

- **a**
- **b**
- **ab**
- **aba**
- **abab**
- **ababa**
- **180°**
- **270°**
- **90°**
DIHEDRAL GROUPS

\[\begin{align*}
&\text{a} & \text{b} & \text{ab} & \text{aba} \\
&180^\circ & & 90^\circ & \\
&\text{abab} & \text{ababa} & \text{ababab} & \\
\end{align*} \]
DIHEDRAL GROUPS

a

b

ab

aba

abab

ababa

ababab

e
DIHEDRAL GROUPS

\[a^2 = e, \]
DIHEDRAL GROUPS

\[a^2 = e, \quad b^2 = e, \]
DIHEDRAL GROUPS

\[a^2 = e, \quad b^2 = e, \quad (ab)^4 = e \]
Dihedral Groups

\[l_2(4) = \langle a, b \mid a^2 = e, \quad b^2 = e, \quad (ab)^4 = e \rangle \]
DIHEDRAL GROUPS
DIHEDRAL GROUPS

\[a, b, ab, aba, (ab)^2, (ab)^3, (ab)^3a, (ab)^4, e \]
DIHEDRAL GROUPS

$I_2(5) = \langle a, b \mid a^2, b^2, (ab)^5 \rangle$
DIHEDRAL GROUPS

\[
l_2(m) = \langle a, b \mid a^2, b^2, (ab)^m \rangle
\]
MATRIX REPRESENTATION
MATRIX REPRESENTATION
MATRIX REPRESENTATION
MATRIX REPRESENTATION
MATRIX REPRESENTATION

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
MATRIX REPRESENTATION

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

\(\alpha\)
MATRIX REPRESENTATION

\[
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]
MATRIX REPRESENTATION

\[\begin{bmatrix}
 0 & 1 \\
 1 & 0
\end{bmatrix} \]

\(\alpha \)
MATRIX REPRESENTATION

\[
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\quad \text{a}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\quad \text{b}
\]
MATRIX REPRESENTATION

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\quad \quad
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\]
MATRIX REPRESENTATION

\[
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\]

\(a\)

\(b\)
MATRIX REPRESENTATION

\[a = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad b = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]
MATRIX REPRESENTATION

\[
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & -1 \\
1 & 0 \\
\end{bmatrix}
\]

\(a\) \(b\) \(ab\)
MATRIX REPRESENTATION

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \quad \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix} \quad \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix} \quad \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\]

\[
a \quad b \quad ab \quad aba
\]

\[
\begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix} \quad \begin{bmatrix}
0 & -1 \\
-1 & 0
\end{bmatrix} \quad \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix} \quad \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

\[
abab \quad ababa \quad ababab \quad e
\]
REPRESENTATIONS
REPRESENTATIONS

• V an n-dimensional \mathbb{C}-vector space.
REPRESENTATIONS

- V an n-dimensional \mathbb{C}-vector space.

- $\text{GL}(V) \cong \text{GL}_n(\mathbb{C})$ the group of all invertible linear transformations $f : V \to V$.
• \(V \) an \(n \)-dimensional \(\mathbb{C} \)-vector space.

• \(\text{GL}(V) \cong \text{GL}_n(\mathbb{C}) \) the group of all invertible linear transformations \(f : V \to V \).

• A representation of a group \((G, \star)\) is a map \(\rho : G \to \text{GL}(V) \) such that for all \(a, b \in G \) we have

\[
\rho(a \star b) = \rho(a) \circ \rho(b)
\]
CHARACTERS

• Let $\rho : G \rightarrow GL_n(\mathbb{C})$ be a representation of a group (G, \star). The function $\chi_\rho : G \rightarrow \mathbb{C}$ defined by

$$\chi_\rho(a) = \text{Tr}(\rho(a))$$

is called the character of ρ.
Let $\rho : G \to GL_n(\mathbb{C})$ be a representation of a group (G, \star). The function $\chi_\rho : G \to \mathbb{C}$ defined by

$$\chi_\rho(a) = \text{Tr}(\rho(a))$$

is called the character of ρ.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>ab</th>
<th>aba</th>
<th>abab</th>
<th>ababa</th>
<th>ababab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 & -1 \ -1 & 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix}$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
CONJUGACY
CONJUGACY

• For any matrices $A, B \in \text{GL}_n(\mathbb{C})$ recall that

$$\text{Tr}(ABA^{-1}) = \text{Tr}(B)$$
CONJUGACY

• For any matrices $A, B \in \text{GL}_n(\mathbb{C})$ recall that

 $$\text{Tr}(ABA^{-1}) = \text{Tr}(B)$$

• Hence for any two elements $a, b \in G$ and any character $\chi : G \to \mathbb{C}$ we have

 $$\chi(a \star b \star a^{-1}) = \chi(b)$$
CONJUGACY

- For any matrices $A, B \in \text{GL}_n(\mathbb{C})$ recall that
 \[\text{Tr}(ABA^{-1}) = \text{Tr}(B) \]
- Hence for any two elements $a, b \in G$ and any character $\chi : G \to \mathbb{C}$ we have
 \[\chi(a \star b \star a^{-1}) = \chi(b) \]
- We say $a, b \in G$ are **conjugate** if there exists an element $x \in G$ such that
 \[x \star a \star x^{-1} = b \]
CONJUGACY

• For any matrices $A, B \in \text{GL}_n(\mathbb{C})$ recall that
 \[\text{Tr}(ABA^{-1}) = \text{Tr}(B) \]

• Hence for any two elements $a, b \in G$ and any character $\chi : G \to \mathbb{C}$ we have
 \[\chi(a \star b \star a^{-1}) = \chi(b) \]

• We say $a, b \in G$ are conjugate if there exists an element $x \in G$ such that
 \[x \star a \star x^{-1} = b \]

• This defines an equivalence relation on G. The resulting equivalence classes are called conjugacy classes.
CONJUGACY

\[
\begin{align*}
 &a & &ababa \\
 &\text{90°} & &\text{270°} \\
 &ab & &ababab \\
 &\text{180°} & &\text{e}
\end{align*}
\]
IRREDUCIBLE CHARACTERS
IRREDUCIBLE CHARACTERS

• A representation $\rho : G \rightarrow \text{GL}(V)$ is irreducible if there is no proper subspace $W \subseteq V$ which is invariant under G. By this we mean that for all $g \in G$ we have $\rho(g)W \subseteq W$.
IRREDUCIBLE CHARACTERS

• A representation $\rho : G \rightarrow GL(V)$ is irreducible if there is no proper subspace $W \subseteq V$ which is invariant under G. By this we mean that for all $g \in G$ we have $\rho(g)W \subseteq W$.

• We have $\rho : G \rightarrow GL(V)$ is irreducible if and only if

$$\frac{1}{|G|} \sum_{g \in G} \chi_\rho(g) \bar{\chi_\rho(g)} = 1$$
IRREDUCIBLE CHARACTERS

• A representation $\rho : G \rightarrow \text{GL}(V)$ is irreducible if there is no proper subspace $W \subseteq V$ which is invariant under G. By this we mean that for all $g \in G$ we have $\rho(g)W \subseteq W$.

• We have $\rho : G \rightarrow \text{GL}(V)$ is irreducible if and only if

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g)\overline{\chi_{\rho}(g)} = 1$$

• A character with this property is also called irreducible.
IRREDUCIBLE CHARACTERS

a

b
IRREDUCIBLE CHARACTERS

\[
\frac{1}{8} (2^2 + 0 + 0 + 0 + 0 + (-2)^2 + 0 + 0) = 1
\]
Theorem

The number of distinct irreducible characters of a finite group is equal to the number of conjugacy classes.
CHARACTER TABLES

Theorem
The number of distinct irreducible characters of a finite group is equal to the number of conjugacy classes.

Let $g_1, \ldots, g_n \in G$ be representatives for the conjugacy classes and let χ_1, \ldots, χ_n be the irreducible characters of G. The square matrix

$$(\chi_i(g_j))_{1 \leq i, j \leq n}$$

is called the character table of G.
CHARACTER TABLES

<table>
<thead>
<tr>
<th>$l_2(4)$</th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>ab</th>
<th>$(ab)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>χ_3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>χ_4</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ψ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
</tr>
</tbody>
</table>
CHARACTER TABLES

<table>
<thead>
<tr>
<th>$I_2(2m)$</th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>$(ab)^r$</th>
<th>$(ab)^m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>$(-1)^r$</td>
<td>$(-1)^m$</td>
</tr>
<tr>
<td>χ_3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>$(-1)^r$</td>
<td>$(-1)^m$</td>
</tr>
<tr>
<td>χ_4</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ψ_j</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>$\varepsilon^{jr} + \varepsilon^{-jr}$</td>
<td>$2(-1)^j$</td>
</tr>
</tbody>
</table>
CHARACTER TABLES

<table>
<thead>
<tr>
<th>$l_2(2m)$</th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>$(ab)^r$</th>
<th>$(ab)^m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>$(-1)^r$</td>
<td>$(-1)^m$</td>
</tr>
<tr>
<td>χ_3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>$(-1)^r$</td>
<td>$(-1)^m$</td>
</tr>
<tr>
<td>χ_4</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ψ_j</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>$\varepsilon^{jr} + \varepsilon^{-jr}$</td>
<td>$2(-1)^j$</td>
</tr>
</tbody>
</table>

$1 \leq j, r \leq m - 1 \quad \varepsilon = e^{\pi i/m}$
SYMMETRIC GROUPS
SYMMETRIC GROUPS

- S_n is the group of all bijective functions $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.
SYMMETRIC GROUPS

- \mathfrak{S}_n is the group of all bijective functions $f : \{1, \ldots, n\} \to \{1, \ldots, n\}$.

- We call \mathfrak{S}_n the symmetric group on n points.
SYMMETRIC GROUPS

• \mathcal{S}_n is the group of all bijective functions $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.

• We call \mathcal{S}_n the symmetric group on n points.

• $|\mathcal{S}_n| = n!$ which can be very large even for small n. For example

$$|\mathcal{S}_{20}| = 2432902008176640000$$
SYMMETRIC GROUPS
Example \((n = 3)\)
SYMMETRIC GROUPS

Example \((n = 3)\)

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 2 \\
3 & \rightarrow 3
\end{align*}
\]

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 2 \\
3 & \rightarrow 3
\end{align*}
\]

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 2 \\
3 & \rightarrow 3
\end{align*}
\]

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 2 \\
3 & \rightarrow 3
\end{align*}
\]

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 2 \\
3 & \rightarrow 3
\end{align*}
\]

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 2 \\
3 & \rightarrow 3
\end{align*}
\]

\[
\begin{align*}
1 & \rightarrow 1 \\
2 & \rightarrow 2 \\
3 & \rightarrow 3
\end{align*}
\]
SYMMETRIC GROUPS

Example \((n = 3)\)

\[
\begin{align*}
1 & \rightarrow 1 & 1 & \rightarrow 1 \\
2 & \rightarrow 2 & 2 & \rightarrow 2 \\
3 & \rightarrow 3 & 3 & \rightarrow 3
\end{align*}
\]
SYMMETRIC GROUPS

Example \((n = 3)\)

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 2 \\
3 & \rightarrow & 3
\end{array}
\]
A function $f \in S_n$ is called a cycle of length k if there exists a subset $X = \{x_1, \ldots, x_k\} \subseteq \{1, \ldots, n\}$ such that $f(i) = i$ for any integer $i \not\in X$ and f acts on the elements of X in the following way:

- $f(x_k) = x_1$
- $f(x_1) = x_2$
- $f(x_2) = x_3$
- $f(x_3) = x_4$
- $f(x_4) = x_k$

And so on, with the sequence repeating until $f(x_k) = x_1$.
Lemma

Every element of \mathfrak{S}_n is a product of disjoint cycles.
SYMMETRIC GROUPS

Lemma
Every element of \mathfrak{S}_n is a product of disjoint cycles.
SYMMETRIC GROUPS
SYMMETRIC GROUPS

- A partition of \(n \) is a sequence \(\mu = (\mu_1, \ldots, \mu_k) \) of integers such that \(\mu_1 \geq \cdots \geq \mu_k \geq 1 \) and \(\mu_1 + \cdots + \mu_k = n \).
SYMMETRIC GROUPS

• A partition of n is a sequence $\mu = (\mu_1, \ldots, \mu_k)$ of integers such that $\mu_1 \geq \cdots \geq \mu_k \geq 1$ and $\mu_1 + \cdots + \mu_k = n$.

• For example the partitions of 5 are

 $(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)$
SYMMETRIC GROUPS

- A partition of n is a sequence $\mu = (\mu_1, \ldots, \mu_k)$ of integers such that $\mu_1 \geq \cdots \geq \mu_k \geq 1$ and $\mu_1 + \cdots + \mu_k = n$.

- For example the partitions of 5 are

 (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

- Given $f \in \mathfrak{S}_n$ let $f_1 \circ \cdots \circ f_k$ be a decomposition of f into a product of disjoint cycles. If μ_i denotes the length of the cycle f_i then the sequence $\mu(f) = (\mu_1, \ldots, \mu_k)$ is a partition of n, after possibly reordering the entries. We call $\mu(f)$ the cycle type of f.
Theorem

Two elements of the symmetric group are conjugate if and only if they have the same cycle type.
SYMMETRIC GROUPS

Theorem
Two elements of the symmetric group are conjugate if and only if they have the same cycle type.

• We will write $P(n)$ for the set of all partitions of n.
Theorem
Two elements of the symmetric group are conjugate if and only if they have the same cycle type.

• We will write $\mathcal{P}(n)$ for the set of all partitions of n.

• For any partition $\lambda \in \mathcal{P}(n)$ we denote by χ^λ an irreducible character of \mathfrak{S}_n.
SYMMETRIC GROUPS

Theorem

Two elements of the symmetric group are conjugate if and only if they have the same cycle type.

• We will write $P(n)$ for the set of all partitions of n.

• For any partition $\lambda \in P(n)$ we denote by χ^λ an irreducible character of S_n.

$$|P(20)| = 627$$
HOOKS OF PARTITIONS

• Consider the partition $\mu = (5, 5, 4, 3, 1, 1) \in P(19)$.
HOOKS OF PARTITIONS

• Consider the partition $\mu = (5, 5, 4, 3, 1, 1) \in P(19)$.
HOOKS OF PARTITIONS

- Consider the partition \(\mu = (5, 5, 4, 3, 1, 1) \in P(19) \).
HOOKS OF PARTITIONS

• Consider the partition \(\mu = (5, 5, 4, 3, 1, 1) \in P(19) \).
HOOKS OF PARTITIONS

• Consider the partition $\mu = (5, 5, 4, 3, 1, 1) \in \mathcal{P}(19)$.

\[H_{22} \]
HOOKS OF PARTITIONS

- Consider the partition $\mu = (5, 5, 4, 3, 1, 1) \in P(19)$.

\[h_{22} = 6 \]
HOOKS OF PARTITIONS

• Consider the partition $\mu = (5, 5, 4, 3, 1, 1) \in \text{P}(19)$.

\[h_{22} = 6 \]
\[l_{22} = 6 \]
HOOKS OF PARTITIONS

• Consider the partition $\mu = (5, 5, 4, 3, 1, 1) \in P(19)$.

$h_{22} = 6$

$l_{22} = 6$
HOOKS OF PARTITIONS

• Consider the partition \(\mu = (5, 5, 4, 3, 1, 1) \in P(19) \).
Consider the partition $\mu = (5, 5, 4, 3, 1, 1) \in P(19)$.

$h_{22} = 6$
$l_{22} = 6$
Theorem (Murnaghan–Nakayama Formula)

Write \(f \in \mathfrak{S}_n \) as a product \(f_1 \circ \cdots \circ f_k \) of disjoint cycles. Assume \(f_k \) is a cycle of length \(m \) then the element

\[
g = f_1 \circ \cdots \circ f_{k-1}
\]

is contained in the symmetric group \(\mathfrak{S}_{n-m} \). For any partition \(\lambda \in \mathcal{P}(n) \) we have

\[
\chi^\lambda(f) = \sum_{h_{ij} = m} (-1)^{l_{ij}} \chi^{\lambda \setminus R_{ij}}(g)
\]
<table>
<thead>
<tr>
<th>S_5</th>
<th>11111</th>
<th>2111</th>
<th>221</th>
<th>311</th>
<th>32</th>
<th>41</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>311</td>
<td>6</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>221</td>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2111</td>
<td>4</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>11111</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>