FORMAL LANGUAGES & AUTOMATA

VICKY G

We are going to study the relationship between a special kind of machine (automata), languages and a special kind of algebra (monoids).

Automata \(\leftrightarrow\) Regular Languages \(\leftrightarrow\) Monoids

1. MONOIDS AND LANGUAGES

A monoid is a set \(M\) together with an associative binary operation, which has an identity.

Thus, a monoid has the following algebraic relations

\[
\forall a, b \in M \quad \exists ab \in M, \\
\forall a, b, c \in M \quad a(bc) = (ab)c, \\
\exists 1 \in M \text{ such that } 1a = a = a1 \quad \forall a \in M.
\]

Note. The identity of \(M\) is unique.

1.1. Alphabets, Words and Languages

Study (sets of) sequences of symbols.

Definition: An alphabet is a finite non-empty set \(A\). A letter is an element of \(A\) and a word (or string) over \(A\) is a finite sequence of elements of \(A\).

Example 1.1. If we have the alphabet \(A = \{0, 1\}\) then the following are words over \(A\): 0, 10, 011. If \(A = \{a, b\}\) then \(a, b, ab, ba, a aa, a ab, \ldots\) are all words over \(A\). If \(A\) is the standard alphabet \(\{a, b, \ldots, z\}\) then \(cat\) and \(atz\) are words over \(A\).

Note. If \(a_1, a_2, \ldots, a_n, a'_1, a'_2, \ldots, a'_m \in A\) then \(a_1a_2\ldots a_n = a'_1a'_2\ldots a'_m \iff n = m\) and \(a_i = a'_i\) for \(1 \leq i \leq n\).

We define \(A^+=\{a_1a_2\ldots a_n \mid n \in \mathbb{N}, a_i \in A, 1 \leq i \leq n\}\) to be the set of all non-empty words over \(A\). Also, introduce the empty word \(\varepsilon\) (in some books denoted 1 or \(\lambda\)). Now, \(A^* = A^+ \cup \{\varepsilon\}\) is the set of all words over \(A\). A language (over \(A\)) is a subset of \(A^*\).

Definition: A language \(L\) is finite if \(|L| < \infty\). A language is cofinite if \(L^c = A^* \setminus L\)

Example 1.2. \(\emptyset, \{\varepsilon\}, \{a, b, ba\}\) are finite languages.
Length of Words
We have that the empty words has no letters and so $|\varepsilon| = 0$. Also,

$$|a_1a_2\ldots a_n| = n.$$

Note. $|xy| = |x| + |y|$

Example 1.3. $|abab| = 4$, $|a| = 1$ and $|aa| = |ab| = 2$.

Let us take the language $L = \{w \in A^* \mid |w| \geq 2\}$, then this is cofinite. This is because $L^c = \{\varepsilon\} \cup A$ is finite.

Concatenation of Words
Take $x, y \in A^*$ then we form a new word xy by putting x and y together, end to end.

Example 1.4. Let $x = ab$ and $y = bca$ then by xy we refer to $abca$.

Note. \(\varepsilon x = x = x\varepsilon\) for all $x \in A^*$. Also $(xy)z = x(yz)$ for all $x, y, z \in A^*$. Hence A^* is a monoid with identity element ε, called the free monoid on A. We note that A^* is not a group as only ε has an inverse element. This is because given any x there can never be a y such that $xy = \varepsilon$.

For $a \in A$, a^n ($n \geq 0$) is the word consisting of n a’s, i.e. $a^0 = \varepsilon$, $a^1 = a$, $a^2 = aa$, $a^3 = aaa$, etc.

Note. \(\{a\}^* = \{\varepsilon, a, aa, aaa, \ldots\}\) = \(\{\varepsilon, a, a^2, a^3, \ldots\}\) = \(\{a^n \mid n \geq 0\}\).

For any $x \in A^*$

$$x^n = \underbrace{xx\ldots x}_{n \text{ times}}.$$

Example 1.5. $x^0 = \varepsilon$ if $x = ab$ then $x^3 = ababab$.

Clearly $x^nx^m = x^{n+m}$ and $(x^n)^m = x^{nm}$ for all $n, m \geq 0$, i.e. the index laws hold.

Letter Count
If $a \in A$ and $x \in A^*$, then $|x|_a$ = the number of occurrences of a in x.

Example 1.6. If $A = \{a, b, c\}$ then $|abca|_a = 2$, $|\varepsilon|_b = 0$, $|accac|_b = |ac^2ac|_b = 0$ and $|ac^2ac|_c = 3$.

Prefix
y is a prefix of a word $x \in A^*$ if $x = yz$ for some $z \in A^*$. We note that ε is a prefix of x for any $x \in A^*$ as $x = \varepsilon x$. Also, any word $x \in A^*$ is a prefix of itself because $x = x\varepsilon$. If $x = a^2b$, then the prefixes of x are $\varepsilon, a, a^2, a^2b$.
1.2. Operations on Languages

Recall that a *language* over A is a subset of A^*. We have that \emptyset, A^* are languages over A and $\emptyset \subseteq L \subseteq A^*$ for any language L.

Boolean Operations

If L,K are languages then $L \cup K$, $L \cap K$, $L \setminus K$ and $L^c = A^* \setminus L$ are also languages.

Product: Let $L,K \subseteq A^*$ then we define $LK = \{xy \mid x \in L, y \in K\}$.

Example 1.7. If we have $\{a,ab\}$ and $\{b,bc\}$ are languages then $\{a,ab\}\{b,bc\} = \{ab,abc,abb,abbc\}$.

As an exercise show that $(KL)M = K(LM)$. For $w \in A^*$ and $L \subseteq A^*$, usually write wL for $\{w\}L$ and Lw for $L\{w\}$, etc. So $wL = \{wv \mid v \in L\}$ and $KwL = K\{w\}L = \{uwv \mid \in K, v \in L\}$. As usual, L^n denotes $\underbrace{L \cdots L}_{n \text{ times}}$.

So $L^1 = L$, $L^2 = LL$, $L^3 = LLL$, \ldots, $L^{n+1} = L^nL$, $L^0 = \{\varepsilon\}$.

The (Kleene) Star: of $L \subseteq A^*$ is $L^* = \{x_1x_2\ldots x_n \mid n \geq 0 \text{ and } x_i \in L, 1 \leq i \leq n\}$

$= L^0 \cup L^1 \cup L^2 \cup \ldots$

$= \bigcup_{n \geq 0} L^n$.

Example 1.8. $a \in A$, $L = \{a^2\}$ then we have $L^* = \{\varepsilon, a^2, a^4, a^6, \ldots \} = \{a^{2n} \mid n \geq 0\}$

Example 1.9. $a,b \in A$, $L = \{ab, ba\}$ then we have $L^* = \{\varepsilon, ab, ba, abab, abba, baba, baab, \ldots \}$

Example 1.10. $\{\varepsilon\}^* = \{\varepsilon\} = \emptyset^*$
If \(L = \{ w \} \) sometimes write \(w^* \) for \(\{ w \}^* \) but be careful:

\[
ab^* = \{ a \} \{ b \}^* = \{ a \} \{ b^n : n \geq 0 \} = \{ ab^n : n \geq 0 \}
\]

the star is only attributed to the \(b \). So, \(\{ ab \}^* \) is written as

\[
(ab)^* = \{ (ab)^n : n \geq 0 \} = \{ \varepsilon, ab, abab, ababab, \ldots \}.
\]

Thus we have \(A^*aab^*aa \) means \(A^*\{ aa \} \{ b \}^*\{ aa \} = \{ waab^n aa : w \in A^*, n \geq 0 \} \).

2. Automata

A point of grammar – the singular form of automata is automaton.

2.1. Various kinds

We concentrate on two kinds of finite state automata.

- **DFA:** complete, deterministic, finite state automata
- **NDA:** non-deterministic finite state automata (usually not complete either).

Formally a DFA is a 5-tuple

\[
A = (A, Q, \delta, q_0, F)
\]

where we have

- \(A \) is an alphabet (so \(|A| < \infty \)),
- \(Q \) is a finite set of “states”,
- \(q_0 \in Q \) is the initial state,
- \(F \subseteq Q \) is the set of final (or accepting, or terminal) states,
- \(\delta: Q \times A \to Q \) is the state transition function or next state function.

2.2. State Transition Diagrams

States are represented by \(\bigcirc \). There are various different kinds of objects in a State Transition Diagram.

- State \(q \) is \(\bigcirc \),
- Final state is \(\bigcirc \) or \(\bigcirc \)
- Initial state by \(\bigcirc \)
- Indicate \(\delta(q_1, a) = q_2 \) by \(\bigcirc \xrightarrow{a} \bigcirc \)

Example 2.1. Let \(A = \{ a, b \} \) then the following

\[
\begin{align*}
\text{Example 2.1.} & \quad \text{Let } A = \{ a, b \} \text{ then the following} \\
& \quad \begin{tikzpicture}
\node (q0) at (0,0) {q_0};
\node (q1) at (1,0) {q_1};
\draw [->] (q0) edge [loop above] node {a, b} (q0);
\draw [->] (q0) edge [bend right] node {a, b} (q1);
\end{tikzpicture}
\end{align*}
\]
is the state transition diagram of the DFA

\[A = \left(\{a, b\}, \{q_0, q_1\}, \delta, q_0, \{q_1\} \right). \]

Now we describe \(\delta \) as

\[\delta(q_0, a) = q_1 = \delta(q_0, b), \]
\[\delta(q_1, a) = q_0 = \delta(q_1, b). \]

We can describe \(\delta \) by a table

\[
\begin{array}{c|cc}
 & a & b \\
 q_0 & q_1 & q_1 \\
 q_1 & q_0 & q_0 \\
\end{array}
\]

For a DFA \(A = (A, Q, \delta, q_0, F) \) we extend \(\delta \) to give a function \(\delta : Q \times A^* \rightarrow Q \) as follows

\[\delta(q, \varepsilon) = q \quad \forall q \in Q, \]
\[\delta(q, wa) = \delta(\delta(q, w), a) \quad \forall w \in A^*, \forall a \in A, \forall q \in Q. \]

Returning to the example above we have

\[
\begin{align*}
\delta(q_0, aba) &= \delta(\delta(q_0, ab), a) \\
&= \delta(\delta(q_0, a), b), a) \\
&= \delta(\delta(q_1, b), a) \\
&= \delta(q_0, a) \\
&= q_1
\end{align*}
\]

A DFA \(A = (Q, A, \delta, q_0, F) \) has \(\delta : Q \times A \rightarrow Q \) a function. Thus because \(\delta \) is a function we have for all \((q, a) \in Q \times A\), \(\delta(q, a) \) is defined, thus \(A \) is complete. Also for all \((q, a) \in Q \times A\), \(\exists ! \delta(q, a) \) means \(A \) is deterministic.

RECALL: \(\delta : Q \times A^* \rightarrow Q \) is given by \(\delta(q, \varepsilon) = q \) and \(\delta(q, wa) = \delta(\delta(q, w), a) \) where \(w \in A^*, a \in A \).

FACT: For all \(u, v \in A^* \) we have

\[\delta(q, uv) = \delta((q, u), v). \]

The proof of this is done by induction on \(|v|\), i.e. the number of letters in \(v \).

Definition: A word \(w \in A^* \) is accepted by \(A \) if \(\delta(q_0, w) \in F \) and \(w \in A^* \) is rejected by \(A \) if \(\delta(q_0, w) \notin F \). The language recognised by \(A \) is
\[L(A) = \{ w \in A^* | \delta(q_0, w) \in F \}, \]
i.e. the set of words that \(A \) accepts. A language \(L \subseteq A^* \) is recognisable if there exists a DFA \(A \) with \(L = L(A) \).

Example 2.2. Find a DFA of \(A = \{ a, b \} \) which recognises

\[L = \{ w \in A^* | w \text{ begins with } ab \} = abA^* \]

![DFA Diagram](image)

Thus we have that \(L(A) = L \).

Example 2.3. Find a DFA \(A \) which recognises

\[L = \{ w \in A^* | |w|_b \leq 2 \} \]

![DFA Diagram](image)

Note. Using different notation we can express \(L \) as

\[L = \{ a \}^* \cup \{ a \}^* \{ b \} \{ a \}^* \cup \{ a \}^* \{ b \} \{ a \}^* \{ b \} \{ a \}^* = a^* \cup a^* ba^* \cup a^* ba^* ba^* \]

Example 2.4. Given a DFA of \(A \)

![DFA Diagram](image)

find the language that is recognised by \(A \). This is

\[L(A) = a^*b = \{ a \}^* \{ b \} = \{ a^n b | n \in \mathbb{N}^0 \} \]

Example 2.5. Given a DFA \(A \)
find the language that is recognised by \mathcal{A}. We can see that \mathcal{A} accepts words of the form
(for $n, m, h, k \in \mathbb{N}^0$) $a^{n+1}b, b^m a^{n+1}b, b^m a^{n+1}b^{h+2} a^{k+1}b$. We now guess that

$$L(\mathcal{A}) = A^*ab = \{wab \mid w \in A^*\}.$$

Suppose that $v \in L(\mathcal{A})$ then

$$\delta(q_0, v) = q_2.$$

For this to happen we must have $v = v'b$ where $\delta(q_0, v') = q_1$. For this to happen we must have $v' = v''a$ and hence $v = v'b = v''ab \Rightarrow v \in A^*ab$ and $L(\mathcal{A}) \subseteq A^*ab$.

Conversely let $w \in A^*ab$ so $w = vab$ for some $v \in A^*$. Notice that $\delta(q_i, ab) = q_2$ for any $i = 0, 1, 2$. Hence

$$\delta(q_0, w) = \delta(q_0, vab) = \delta(\delta(q_0, v), ab) = q_2 \in F.$$

Hence $A^*ab \subseteq L(\mathcal{A})$ and so $A^*ab = L(\mathcal{A})$.

Example 2.6 (A Basic Automaton). The following automaton represents a vending machine. The cost of goods is 20p and it has states $\{0, 5, 10, 15, 20, X\}$. The DFA \mathcal{A} consists of

$$A = \{5, 10, 20\},$$

$$q_0 = \{0\},$$

$$F = \{20\},$$

$$\delta(X, a) = X,$$

$$\Rightarrow \delta(u, v) = u + v.$$
We have the language recognised by A is

$$L(A) = \{555, 5510, 20, 1055, \ldots \}.$$

Notation: for an alphabet A write Rec_{A^*} for the class of recognisable languages over A. So, $L \in \text{Rec}_{A^*}$ means “L is recognisable”, i.e. there exists a DFA A with $L = L(A)$

To show $L \in \text{Rec}_{A^*}$ we must find a DFA A with $L = L(A)$. How do we show that $L \notin \text{Rec}_{A^*}$?

Lemma 2.1 (Pumping Lemma - PL). Let $L \in \text{Rec}_{A^*}$. Then there exists $N \in \mathbb{N}$ such that for all $w \in L$ with $|w| \geq N$ there exists a factorisation $w = uvx$ $(u,v,x \in A^*)$ with $|v| \neq \varepsilon$ and $|uv| \leq N$ and $uv^kx \in L$ for all $k \geq 0$ (i.e. ux, uvx, uv^2x, \ldots all lie in L).

Note.

1. $u, v, x \in A^*$; usually not in L; u, x can be empty; we must have $v \neq \varepsilon$.
2. N is a pumping length for L; if $M \geq N$, then M is also a pumping length.
3. The conditions of the pumping lemma are necessary for $L \in \text{Rec}_{A^*}$ but not sufficient.

Examples of the use of the Pumping Lemma

1. $A = \{a, b\}; L = \{a^n b^n \mid n \geq 0\}$ is not recognisable.

 Proof. Suppose $L \in \text{Rec}_{A^*}$. Let N be a pumping length for L. Choose $w = a^n b^n$, so $w \in L$ and $|w| = 2N \geq N$. So, there exists a factorisation $w = uvx$ where $|uv| \leq N$ and $v \neq \varepsilon$. So, $u = a^r$, $v = a^s$ and $x = a^t b^N$ where $r + s + t = N$ ($u > w = uvx = a^N b^N$) and $s \neq 0$. By the pumping lemma, $uv^2x \in L$, i.e. $a^r a^s a^t a^N b^N = a^{N+s} b^N \in L$ but this is a contradiction as $N + s \neq N$. Hence $L \notin \text{Rec}_{A^*}$. \hfill \Box

2. $A = \{a, b\}$, $L = \{w \in A^* \mid |w|_a = |w|_b\}$. We claim that $L \notin \text{Rec}_{A^*}$.
Given $L \subseteq A^*$, suppose we want to show $L \not\in \text{Rec } A^*$. Assume $L \in \text{Rec } A^*$ and aim for a contradiction. Let N be a pumping length for L. Choose $w \in L$ with $|w| \geq N$. By the pumping lemma, w has a fact satisfying the conditions of PL. Use this to get a contradiction. Therefore $L \not\in \text{Rec } A^*$ (Note: need only choose one w - choose an easy one!).

(3) $A = \{a\}$, $L = \{a^p \mid p \text{ is prime}\}$. Claim $L \not\in \text{Rec } A^*$.

Proof. Suppose $L \in \text{Rec } A^*$. Let N be a pumping length for L. Let p be prime, $p \geq N$. Then $w = a^p \in L$ and $|w| \geq N$. By PL there exists a factorisation $w = uvx$ where $|vx| \leq N$ and $v \neq \varepsilon$. Thus $uv^kx \in L$ for all $k \geq 0$. Therefore $L \not\in \text{Rec } A^*$. □

Proof of PL. Let $L \in \text{Rec } A^*$. Then $L = L(A)$ for some DFA A, where $A = (A, Q, \delta, q_0, F)$. Let $N = |Q|$, the number of states of A. If $w \in L$ and $|w| \geq N$, then $\delta(q_i, w) \in F$. Let $w = a_1a_2\ldots a_N\ldots a_m$ where $a_i \in A$ and $m = |w| \geq N$. As $w \in L$ we have

![Diagram](https://example.com/diagram.png)

where $q_i \in Q$, q_0 is the initial state and $q_m \in F$ and $\delta(q_i, a_i) = q_{i+1}$ where $0 \leq i \leq m - 1$. Since $N + 1 > N = |Q|$, the list q_0, q_1, \ldots, q_N must contain repeats; say $q_i = q_j$ where $0 \leq i < j \leq N \leq m$. Then we have

![Diagram](https://example.com/diagram.png)

Put $u = a_1 \ldots a_i$, $v = a_{i+1} \ldots a_j$, $x = a_{j+1} \ldots a_m$ ($u = \varepsilon$ if $i = 0$, $v \neq \varepsilon$ as $i < j$, $x = \varepsilon$ if $j = N = m$). We have $|uv| = j \leq N$, $v \neq \varepsilon$, $w = uvx$. For any $k \geq 0$,

$$\delta(q_0, uv^kx) = \delta(\delta(q_0, u), v^kx) = \delta(q_i, v^kx) = \delta(\delta(q_i, v^k), x) = \delta(q_i, x) = \delta(q_N, x) = q_m \in F.$$ Therefore $uv^k \in L$ for all $k \geq 0$. □
2.3. NDAs: Non-Deterministic finite state Automata

Example 2.7. In Exercises 2, you are asked to find a DFA which accepts \(L = \{ abwab \mid w \in A^* \} \) where \(A = \{ a, b \} \). Want to write

\[
\begin{array}{c}
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_4 \\
ap, b
\end{array}
\]

but this is not a DFA (neither complete nor deterministic). It is an example of an NDA.

Definition: An NDA \(\mathcal{A} \) is a 5-tuple \((A, Q, E, I, F)\) where
- \(A \) is a finite alphabet,
- \(Q \) is a finite set of states,
- \(E \) is a subset of \(Q \times A \times Q \),
- \(I \subseteq Q \) is a set of initial states,
- \(F \subseteq Q \) is a set of final states.

Elements of \(E \) have the form \((p, a, q)\) where \(p, q \in Q \) and \(a \in A \). These are called edges.

In the above example we can see that our edges are \((q_0, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_2), (q_2, a, q_3), (q_3, b, q_4)\). A path in \(\mathcal{A} \) (of length \(n \geq 1 \)) is a finite sequence of edges. So, \((q_1, a_1, q_1), (q_1, a_2, q_2), \ldots, (q_n-1, a_n, q_n)\) is a path. The label of the path is \(a_1a_2\ldots a_n \); in the state transition diagram we have

\[
\begin{array}{c}
p_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} a_{n-1} q_{n-1} \xrightarrow{a_n} q_n \\
op \xrightarrow{w} q \ (w \in A^*) \text{ means that there exists a path from } p \text{ to } q \text{ in } \mathcal{A}, \text{ with label } w. \text{ Note that there exists } p \xrightarrow{w} p \text{ for any } p \in Q. \\

Definition: \(w \in A^* \) is accepted by the NDA \(\mathcal{A} \) if there exists a path \(q_0 \xrightarrow{w} q \) for some \(q_0 \in I \) and \(q \in F \).

Definition: The language recognised by the NDA \(\mathcal{A} \) is

\[
L(\mathcal{A}) = \{ w \in A^* \mid w \text{ is accepted by } \mathcal{A} \}.
\]

Note that in the example the language recognised by the NDA is
\[
\{\text{abwab} \mid w \in A^*\} \quad A = \{a,b\}.
\]

We claim that for a language \(L \subseteq A^* \) we have that

\(L \) is recognised by a DFA \(\iff \) \(L \) is recognised by an NDA.

Proposition. We start by showing \(L \in \text{Rec} A^* \Rightarrow \) \(L \) is recognised by an NDA.

Proof. Let \(L = L(A) \) where \(A = (A, Q, \delta, q_0, F) \) is a DFA. Put

\[
E = \{(q,a,\delta(q,a)) \mid q \in Q, a \in A\} \subseteq Q \times A \times Q
\]

and \(I = \{q_0\} \). Now we have an NDA

\[
A' = (A, Q, E, I, F)
\]

and \(L(A) = L(A') \). \(\square \)

We can think of a DFA as a special kind of NDA, one in which there exists one initial state and for all \(q \in Q, a \in A \), there exists exactly one triple \((q,a,p)\).

Now, we need to prove the converse. First we define some notation. Let

\[
A = (A, Q, E, I, F)
\]

be an NDA. For \(S \subseteq Q, w \in A^* \), we define \(Sw = \{q \in Q \mid p \xrightarrow{w} q \text{ for some } p \in S\} \). Note that \(Sw \subseteq Q \) (so there exists only finitely many sets of the form \(Sw \)).

Example 2.8. Given an NDA \(A \)

\[
\begin{array}{c}
1 \\
\begin{array}{ccc}
\text{a} & \text{b} & \text{3} \\
\text{1} & \text{2} & \text{a} & \text{4} & \text{a} & \text{5}
\end{array}
\end{array}
\]

Now we have that

\[
\begin{align*}
\{1,2\}ab &= \{3\} = \{1\}ab, \\
\{2\}ab &= \emptyset, \\
\{1\}aa &= \{5\}, \\
\{1\}a &= \{2,4\}, \\
\emptyset a &= \emptyset = \emptyset w \quad \forall w.
\end{align*}
\]
In general, for $a \in A$ we have that

$$S\varepsilon = S,$$

$$Sa = \{p \in Q \mid \exists (q, a, p), q \in S\},$$

$$Sa_1a_2\ldots a_n = (\ldots ((Sa_1)a_2)\ldots)a_n),$$

$$\emptyset w = \emptyset \quad w \in A^*.$$

We now construct a DFA from our NDA $A = (a, Q, E, I, F)$ as follows. Put $Q' = \{Iw \mid w \in A^*\}$.

Note. We have $Q' \subseteq \mathcal{P}(Q)$ (set of all subsets of Q).

As Q and hence $\mathcal{P}(Q)$ are finite, then Q' is finite. How do we find Q''? Say $A = \{a_1, a_2, \ldots, a_n\}$. Now write down $I = I\varepsilon$ and calculate Ia_i for each a_i. Then for each Ia_i we calculate Ia_ia_j for all i and for all j. We continue this process until we have a list

$$Iw_1, Iw_2, \ldots, Iw_k$$

such that Iw_ka_i is already in the list for all h and for all i.

Now given an NDA $A = (A, Q, E, I, F)$ we define a DFA $B = (A, Q', \delta, I, F')$ where $\delta(S, a) = Sa$ and $F' = \{s \in Q' \mid S \cap F \neq \emptyset\}$.

Note. $\delta(S, a_1a_2\ldots a_n) = \delta(\delta(S, a_1), a_2)\ldots), a_n) = (\ldots (Sa_1)a_2)\ldots a_n) = Sa_1\ldots a_n$

EXAMPLE 2.9 (Construction of a DFA from and NDA). Let our NDA A be

![Diagram of a DFA]

Then the language accepted by A is

$$L(A) = \{\varepsilon, ab, aa\}.$$

We now calculate our set Q'. We note that the set of initial states is $I = \{1, 3\}$. Then
We have a DFA B where

$$B = (A, Q', \delta, q_0, F').$$

For this we have

- $Q' = \{ I, \{2, 4\}, \emptyset, \{3\}, \{5\}\}$
- $q_0 = I = \{1, 3\}$
- $F' = \{ S \in Q' | S \cap F \neq \emptyset \} = \{ S \in Q' | S \cap \{3, 5\} \neq \emptyset \} = \{ I, \{3\}, \{5\}\}$

and δ is given as in the following state transition diagram.

Then we have $L(B) = \{ \epsilon, ab, aa \}$

Proposition. $L \subseteq A^* \text{ recognised by an NDA } \Rightarrow L \in \text{Rec } A^*$.

Proof. Let $L = L(A)$ where $A = (A, Q, E, I, F)$. Define a DFA $B = (A, Q', \delta, q_0, F')$ as above. Now recall that

- $Q' = \{ Iw | w \in A^* \}$,
- $\delta(S, a) = Sa$,
- $q_0 = I$,
- $F' = \{ \delta \in Q' | S \cap F \neq \emptyset \}$.

Claim. $L(A) = L(B)$

We have that
\[w \in L(B) \iff \delta(q_0, w) \in F' \]
\[\iff \delta(I, w) \in F' \]
\[\iff Iw \in F' \]
\[\iff Iw \cap F \neq \emptyset \]
\[\iff \text{there exists a path } p \xrightarrow{w} q \]
\[\text{for some } p \in I, q \in F \]
\[\iff w \in L(A). \]

Hence this gives us our theorem.

Theorem 2.1. \(L \in \text{Rec} \ A^* \iff L = L(A) \) for some NDA \(A \).

Example 2.10. Any \(A \) such that \(A^* \in \text{Rec} \ A^* \) as the DFA

\[
\begin{array}{c}
\text{\includegraphics{figure1}}
\end{array}
\]

for all \(a \in A \) recognises \(A^* \).

Example 2.11. The \(\emptyset \) \(\in \text{Rec} \ A^* \) as \(\emptyset \) recognised by the NDA

\[
\begin{array}{c}
\text{\includegraphics{figure2}}
\end{array}
\]

Example 2.12. \(\{\varepsilon\} \) \(\in \text{Rec} \ A^* \) as \(\{\varepsilon\} \) is recognisable by the NDA

\[
\begin{array}{c}
\text{\includegraphics{figure3}}
\end{array}
\]

Example 2.13. For \(w = a_1a_2 \ldots a_n \in A^+ \) (\(a_i \in A \)) then \(\{w\} \) is recognisable by the NDA

\[
\begin{array}{c}
\text{\includegraphics{figure4}}
\end{array}
\]

So all singleton languages lie in \(\text{Rec} \ A^* \).

3. Rational Languages and Kleene’s Theorem

3.1. **Closure Properties of Rec \(A^* \)**

Proposition (1). \(L \in \text{Rec} \ A^* \Rightarrow L^c \in \text{Rec} \ A^* \)
Proof. If \(L \in \text{Rec} \) then \(L = L(A) \) where \(A = (A, Q, \delta, q_0, F) \). Let \(A^c = (A, Q, \delta, q_0, F^c) \). Then

\[
w \in L(A^c) \iff \delta(q_0, w) \in F^c \iff \delta(q_0, w) \notin F \iff w \notin L(A) = L \iff w \in L^c.
\]

Therefore \(L(A^c) = L^c \) and \(L^c \in \text{Rec} \). \(\square \)

Proposition (2). \(L, K \in \text{Rec} \) \(\Rightarrow \) \(L \cup K \in \text{Rec} \)

Proof. Let \(L = L(A) \) and \(K = L(B) \) where \(A = (A, Q, E, I, F) \) and \(B = (A, P, E', I', F') \) are NDAs. Assume \(Q \cap P = \emptyset \). Put \(C = (A, Q \cup P, E \cup E', I \cup I', F \cup F') \). Then

\[
w \in L \cup K \iff w \in L \text{ or } w \in K
\]

\[
\iff \exists \text{ path } q_0 \xrightarrow{w} q \text{ in } A \text{ with } q_0 \in I \text{ and } q \in F
\]

or \(\exists \text{ path } p_0 \xrightarrow{w} p \text{ in } B \text{ with } p_0 \in I' \text{ and } p \in F' \).

\[
\iff \exists \text{ path } r_0 \xrightarrow{w} r \text{ in } C \text{ with } r_0 \in I \cup I' \text{ and } r \in F \cup F' \text{ (since } P \cap Q = \emptyset)
\]

\(\iff w \in L(C) \).

Therefore \(L \cup K \in \text{Rec} \). \(\square \)

Corollary 3.1. \(L_1, L_2, \ldots, L_m \in \text{Rec} \) \(\Rightarrow \) \(L_1 \cup L_2 \cup \cdots \cup L_m \in \text{Rec} \).

Proof. Proposition 2 and Induction. \(\square \)

Corollary 3.2. \(L, K \in \text{Rec} \) \(\Rightarrow \) \(L \cap K \in \text{Rec} \).

Proof. \(L \cap K = (L^c \cup K^c)^c \); hence result by propositions 1 and 2. \(\square \)

Corollary 3.3. \(L_1, L_2, \ldots, L_m \in \text{Rec} \) \(\Rightarrow \) \(L_1 \cap L_2 \cap \cdots \cap L_m \in \text{Rec} \).

Proof. Corollary 3.2 and Induction. \(\square \)

Corollary 3.4. \(L, K \in \text{Rec} \) \(\Rightarrow \) \(L \setminus K \in \text{Rec} \).

Proof. Exercise Sheet 4. \(\square \)

Note. \(\text{Rec} \) is NOT closed under infinite \(\cup \) and \(\cap \) (Exercise Sheet 4).

Proposition (3). Let \(L, K \in \text{Rec} \). Then \(LK \in \text{Rec} \) (Recall \(LK = \{wv \mid w \in L, v \in K\} \)).

Proof. First assume \(\varepsilon \notin K \). Let \(L = L(A) \) and \(K = L(B) \) where

\[
A = (A, Q, E, I, F) \quad \text{and} \quad B = (A, P, E', I', F')
\]

are NDAs and \(P \cap Q = \emptyset \).

[We would like
but this would not ‘separate’ \mathcal{A} and \mathcal{B} adequately].

Put $\mathcal{C} = (A, Q \cup P, \tilde{E}, I, F')$ where

$$\tilde{E} = \tilde{E} = E \cup E' \cup \{(q, ar) \mid q \in F \text{ and } (p_0, a, r) \in E' \text{ for some } p_0 \in I\}.$$

$(p_0, a, r) \in E' \iff (q, a, r) \in \tilde{E}$. Now we have

$$w \in LK \iff w = uv, \text{ some } u \in L, v \in K$$

$$\iff w = uav', \text{ some } u \in L, v = av' \in K, a \in A \text{ (as } \varepsilon \notin K)$$

$$\iff \exists q_0 \in I, q \in F, q_0 \xrightarrow{w} q \text{ in } \mathcal{A}$$

and $\exists p_0 \in I, p \in F', p_0 \xrightarrow{a} p \text{ in } \mathcal{B}$

$$\iff \exists q_0 \in I, q \in F, q_0 \xrightarrow{\tilde{w}} q \text{ in } \mathcal{A} \text{ and}$$

$$\exists p_0 \in I', r \in P, p \in F' \text{ with } p_0 \xrightarrow{a} r \xrightarrow{v'} p \text{ in } \mathcal{B}$$

$$\iff \exists q_0 \in I, p \in F, q_0 \xrightarrow{uav'} p \text{ in } \mathcal{C}$$

$$\iff uav' = uv \in L(C).$$

Hence $L(\mathcal{C}) = LK$ and so $LK \in \text{Rec } A^*$. Hence, if $\varepsilon \notin K$, then $LK \in \text{Rec } A^*$. Finally, if $\varepsilon \in K$, then $K' = K \setminus \{\varepsilon\}$ is recognisable by Corollary 3.4. We have

$$LK = L(K' \cup \{\varepsilon\})$$

$$= LK' \cup L\{\varepsilon\} \quad \text{(Exercise 1)}$$

$$= LK' \cup L$$

and $LK' \in \text{Rec } A^*$ by the first part of the proof, so $LK \in \text{Rec } A^*$ by Proposition 2. \qed

Proposition. $L \in \text{Rec } A^* \Rightarrow L^* \in \text{Rec } A^*$
Proof. Recall that

\[L^* = \bigcup_{n \geq 0} L^n = L^0 \cup L^1 \cup L^2 \cup \ldots = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \cup \ldots \]

Since \(L \) is recognisable, \(L = L(A) \) for some DFA \(A = (A, Q, \delta, q_0, F) \).

Claim. We claim, \(L = L(B) \) where \(B = (A, P, \sigma, p_0, G) \) for a DFA \(B \) with \(\sigma(p, a) \neq p_0 \) for any \(p \in P, a \in A \).

Proof. Put \(P = Q \cup \{p_0\} \) where \(p_0 \not\in Q \) and

\[\sigma(q, a) = \delta(q, a) \quad \text{for all } q \in Q, a \in A, \]
\[\sigma(p_0, a) = \delta(q_0, a) \]

Now put

\[G = \begin{cases} F & \text{if } \varepsilon \not\in L(A) \text{ (i.e. } q_0 \not\in F), \\ F \cup \{p_0\} & \text{if } \varepsilon \in L(A) \text{ (i.e. } q_0 \in F). \end{cases} \]

Now check that \(L(A) = L(B) \)

Note. \(\sigma(p, a) \neq p_0 \) for all \(p \in P, a \in A \).

Let \(L = L(B) \) where \(B = (A, P, \sigma, p_0, G) \) is a DFA with \(\sigma(p, a) \neq p_0 \) for all \(p \in P, a \in A \). Put \(C = (A, P, E, \{p_0\}, \{p_0\}) \) where

\[E = \{ (p, a, \sigma(p, a)) \mid p \in P, a \in A \} \cup \{ (p, a, p_0) \mid p \in P, \sigma(p, a) \in G \} \]

Note. \(\varepsilon \in L^* \) and \(\varepsilon \in L(C) \)
Suppose \(w \neq \varepsilon \). Then

\[
w \in L^* \iff w = w_1 w_2 \ldots w_t \text{ with } t \geq 1, w_i \in L \setminus \{\varepsilon\} \text{ for all } i, \\
\Rightarrow w = w_1 w_2 \ldots w_t, t \geq 1, \sigma(p_0,w_i) \in G \forall i, \\
\Rightarrow w = w_1 w_2 \ldots w_t, t \geq 1, p_0 \xrightarrow{w_i} p \text{ in } B \forall i, p \in G, \\
\Rightarrow w = w_1 \ldots w_t, t \geq 1, p_0 \xrightarrow{w_i} p_0 \text{ in } C \forall i, \\
\Rightarrow p_0 \xrightarrow{w_i} p_0 \text{ in } C, \\
\Rightarrow w \in L(C).
\]

Hence we have \(L^* \subseteq L(C) \). Conversely let \(w \in L(C) \Rightarrow p_0 \xrightarrow{w_i} p_0 \in C \). Let \(w = a_1 a_2 \ldots a_n \) (\(a_i \in A \)) and

\[
p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} p_2 \ldots \xrightarrow{a_n} p_n = p_0
\]

amongst \(1, \ldots, n \). Let \(i_1, i_2, \ldots, i_t = n \) be such that

\[
0 < i_1 < i_2 < \ldots < i_t \quad \text{and } p_{ij} = p_0.
\]

Put

\[
w_1 = a_1 a_2 \ldots a_{i_1}, \\
w_2 = a_{i_1+1} \ldots a_{i_2}, \\
\vdots \\
w_t = a_{i_{t-1}+1} \ldots a_{i_t}.
\]

Then \(w = w_1 w_2 \ldots w_t \) and \(p_0 \xrightarrow{w_i} p_0 \in C \) for all \(j \) (\(p_0 \xrightarrow{w_i} p \xrightarrow{a_{i_j}} p_0 \) in \(C \), so in \(B \), \(p_0 \xrightarrow{w_i} p \xrightarrow{a_{i_j}} p' \in G \) in \(B \)). So, \(w = w_1 w_2 \ldots w_t \) and \(p_0 \xrightarrow{w_i} p' \in G \) in \(B \), i.e. \(w = w_1 w_2 \ldots w_t \) where \(w_j \in L(B) = L \) for all \(j \Rightarrow w \in L^* \). Therefore \(L(C) \subseteq L^* \) and so \(L(C) = L^* \). \(\square \)

Examples of using Closure Properties

Example 3.1. \(L \) finite \(\Rightarrow L \in \text{Rec } A^* \).

Proof. \(L \) finite \(\Rightarrow L = \emptyset \) or \(L = \{w_1, w_2, \ldots, w_n\} \) for some \(w_i \in A^* \). We know \(\emptyset \in \text{Rec } A^* \) and \(\{w_i\} \in \text{Rec } A^* \) for all \(i \). Therefore \(L = \{w_1\} \cup \{w_2\} \cup \ldots \cup \{w_n\} \) is recognisable by Corollary 3.5. \(\square \)

Example 3.2. \(L \) cofinite \(\Rightarrow L \in \text{Rec } A^* \).

Proof. \(L \) cofinite \(\Rightarrow L^c \) is finite \(\Rightarrow L^c \in \text{Rec } A^* \) by above example. Hence \(L = (L^c)^c \in \text{Rec } A^* \) by proposition 1. \(\square \)
Example 3.3. \(A = \{a, b\} \). Then \(L = A^*aaA^* \cup A^*bbA^* \in \text{Rec} A^* \).

Proof. \(A^*, \{aa\}, \{bb\} \in \text{Rec} A^* \) so \(A^*aaA^*, A^*bbA^* \in \text{Rec} A^* \) by proposition 7 (twice). Hence \(L = A^*aaA^* \cup A^*bbA^* \in \text{Rec} A^* \). \(\square \)

Example 3.4. \(L = \{a^n \mid n \text{ is not prime} \} \notin \text{Rec} A^* \).

Proof. \(L \in \text{Rec} A^* \Rightarrow L^c \in \text{Rec} A^* \) (by Proposition 1). But \(L^c = \{a^p \mid p \text{ is prime} \} \) is not in \(\text{Rec} A^* \). Contradiction. Hence \(L \notin \text{Rec} A^* \). \(\square \)

Example 3.5. \(L = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\} \) an alternate argument for \(L \notin \text{Rec} A^* \).

Let \(L = \{a^mb^n \mid m \geq 0, n \geq 0\} \in \text{Rec} A^* \) (See Exercises 4). Suppose \(L \in \text{Rec} A^* \), then \(L \cap K \in \text{Rec} A^* \) by Corollary 6. But \(L \cap K = \{a^mb^n \mid n \geq 0\} \) – we know this is not recognisable by the Pumping Lemma. This is a contradiction and hence \(L \) is not recognisable.

Note. \(B \subseteq A \) then for \(L \subseteq B^* \) we have \(L \in \text{Rec} B^* \Leftrightarrow L \in \text{Rec} A^* \) (check).

Example 3.6.

(a) \(L' = \{a^n b^p \mid n \geq 0, p \text{ prime} \} \notin \text{Rec} A^* \), \(A = \{a, b\} \). Now,

\[L' \in \text{Rec} A^* \Rightarrow L' \cap B^* \in \text{Rec} A^* \Rightarrow \{b^p \mid p \text{ is prime}\} \in \text{Rec} A^* \]

a contradiction and hence \(L' \) is not recognisable. In fact,

\[L = \{a^n b^p \mid n \geq 1, p \text{ prime}\} \]

is not recognisable (see later for why).

(b) \(L \cup b^* \notin \text{Rec} A^* \)

Proof. \(L \cup b^* \in \text{Rec} A^* \Rightarrow (L \cup b^*) \cap a^+b^* \in \text{Rec} A^* \). Recall tat for an alphabet \(A, A^+ = A^* \setminus \{\varepsilon\} \), so \(a^+ = \{a^n \mid n \geq 1\} \) – note \(a^+b^* = (a^* \setminus \{\varepsilon\})b^* \in \text{Rec} A^* \).

But \((L \cup b^*) \cap a^+b^* = L \) – and \(L \) is not recognisable, a contradiction. Hence \(L \cup b^* \notin \text{Rec} A^* \). \(\square \)

(c) \(L \cup b^* \) satisfies the conditions of the Pumping Lemma (exercise).

3.2. Rational Operations

Let \(A \) be an alphabet. The rational operations (on languages over \(A \)) are union, product and star, i.e. \(L, K \Rightarrow L \cup K, L, K \Rightarrow LK \) and \(L \Rightarrow L^* \). The Boolean operations are union, intersection and complement, i.e. \(L, K \Rightarrow L \cup K, L, K \Rightarrow L \cap K \) and \(L \Rightarrow L^c \).

We have seen that \(\text{Rec} A^* \) is closed under the rational operations and the Boolean operations.

Definition: \(L \subseteq A^* \) is rational if

(i) \(L \) is finite or
(ii) L can be obtained from finite languages by applying rational operations a finite number of times.

$\text{Rat } A^*$ is the set of all rational languages over A.

Observation: We have already proved that any finite language lies in $\text{Rec } A^*$ and if $L, K \in \text{Rec } A^*$ then $L \cup K, LK, L^* \in \text{Rec } A^*$ – consequently

$$\text{Rat } A^* \subseteq \text{Rec } A^*.$$

Example 3.7.

(a) $\emptyset, \{w\}, \{ab, ba, a^6bc\}$ are finite and so rational.

(b) $\{ab, ba, a^6bc\}^*, ab^*a = \{a\}\{b\}^*\{a\} \in \text{Rat } A^*$.

(c) $L = \{abwab \mid w \in A^*\} = \{ab\}\{a, b\}^*\{ab\} \in \text{Rat } A^*$

(d) $L = \{x \in \{a, b\}^* \mid |x|_a \leq 1\} = b^* \cup b^*ab^* \in \text{Rat } A^*$.

Theorem 3.1 (Kleene’s Theorem). $\text{Rat } A^* = \text{Rec } A^*$.

Proof. We have already observed that $\text{Rat } A^* \subseteq \text{Rec } A^*$.

Let $L \in \text{Rec } A^*$. Then $L = L(A)$ for some NDA $A = (A, Q, E, I, F)$. We prove by induction on $|E|$ that $L \in \text{Rat } A^*$. If $|E| = 0$ then $L = \{\varepsilon\}$ if $I \cap F \neq \emptyset$ and $L = \emptyset$ if $I \cap F = \emptyset$. So L is finite, hence $L \in \text{Rat } A^*$.

Now let $|E| = n > 0$ and suppose $L(B) \in \text{Rat } A^*$ for all NDAs B with the number of edges of $B < n$. Let $e \in E$, so $e = (p, a, q)$ and define 4 new NDAs as follows:

$$A_0 = (A, Q, E \setminus \{e\}, I, F),$$

$$A_1 = (A, Q, E \setminus \{e\}, I, \{p\}),$$

$$A_2 = (A, Q, E \setminus \{e\}, \{q\}, \{p\}),$$

$$A_3 = (A, Q, E \setminus \{e\}, \{q\}, F).$$

Let $L_i = L(A_i)$. By our induction hypothesis each $L_i \in \text{Rat } A^*$ (as each A_i has $n - 1$ edges). Hence

$$L_4 = L_0 \cup L_1\{a\}(L_2\{a\})^*L_3 \in \text{Rat } A^*.$$

We claim that $L = L_4$. First we note that

$$L_0 = L(A_0) = \{w \in L \mid \exists q_o \xrightarrow{w} r, q_o \in I, r \in F \text{ not involving the edge } e\},$$

$$\subseteq L = L(A).$$

Let $w \in L_1\{a\}(L_2\{a\})^*L_3$. Then $w = ua(v_1av_2a\ldots v_ma)x$, where $u \in L_1$, $v_i \in L_2$, $x \in L_3$ with $1 \leq i \leq m$ and there exists a path in A

$$q_0 \overset{u}{\rightarrow} p \xrightarrow{a} q \xrightarrow{x} r$$
Therefore \(w \in L(A) = L \). We have shown that \(L_4 \subseteq L \). Conversely suppose \(w \in L(A) \). Then there exists a path \(q_0 \xrightarrow{w} r \in F \) in \(A \).

If the edge \(e \) is not used in this path, we have \(q_0 \xrightarrow{w} r \in F \) in \(A_{\emptyset} \) so \(w \in L(A_{\emptyset}) = L_0 \subseteq L_4 \).

Suppose now that \(w = a_1a_2 \ldots a_n \) and

\[
q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{} \ldots \xrightarrow{} q_n = r
\]

where the edge \(e \) occurs. Suppose that

\[
(q_{i_1-1}, a_{i_1}, q_{i_1}), \ldots, (q_{i_t-1}, a_{i_t}, q_{i_t})
\]

are all the occurrences of \(e = (p, a, q) \) (each \(a_{i_j} = a \)). Then \(w = w_0a_1w_1 \ldots aw_t \) where

\[
q_0 \xrightarrow{w_0} p \xrightarrow{a} q \xrightarrow{w_1} p \xrightarrow{a} q \xrightarrow{} p \xrightarrow{a} q \xrightarrow{w_t} r
\]

Hence \(w_0 \in L(A_1) = L_1 \), \(w_i \in L(A_2) = L_2 \) (\(1 \leq i < t \)), \(w_t \in L(A_3) = L_3 \). Hence \(w = w_0a_1w_1 \ldots a_{i_{t-1}}w_t \in L_1a(L_2a)^*L_3 \subseteq L_4 \).

Therefore \(L \subseteq L_4 \). Hence \(L = L_4 \) and \(L \in \text{Rec } A^* \). \(\square \)

Hence for \(L \subseteq A^* \) we know

(i) \(L = L(A) \) for some DFA \(A \) (\(L \in \text{Rec } A^* \)),

(ii) \(L = L(A) \) for some NDA \(A \),

(iii) \(L \) is rational (\(L \in \text{Rec } A^* \)).

3.3. Specialisation to \(A = \{a\} \)

Let \(A = (Q, \delta, q_0, F) \) be a DFA. Then we have that \(q \in Q \) is accessible if \(\delta(q_0, w) = q \) for some \(w \in A^* \). \(A \) is accessible if every state of \(A \) is accessible.

Clearly if \(A \) has inaccessible states, these can be removed to give a DFA \(A' \) with \(L(A') = L(A) \) – so we lose nothing by assuming our DFAs are accessible. We assume from now on our DFAs are accessible.

Proposition. Let \(L \subseteq a^* \{a\}^* \). Then \(L \in \text{Rec } A^* \iff L = K \cup J(a^p)^* \) for some finite \(K, J \subseteq A^* \).

Proof. (\(\Rightarrow \)) Kleene’s theorem.

(\(\Leftarrow \)) Let \(L = L(A) \) where \(A = (\{a\}, Q, \delta, q_0, F) \) is an accessible DFA. Put \(q_k = \delta(q_0, a^k) \) as \(A \) is accessible \(Q = \{q_0, q_1, \ldots\} \). We have \(Q \) is a finite set, so let \(m \geq 0 \) be the least number such that \(q_m = q_{m+r} \) for some \(r \geq 1 \) and let \(p \geq 1 \) be least such that \(q_m = q_m + p \).
Let $F' = \{q_0, q_1, \ldots, q_{m-1}\} \cap F$ and $F'' = \{q_m, q_{m+1}, \ldots, q_{m+p-1}\} \cap F$, $F = F' \cup F''$. Put

\[
K = \{a^i \mid q_i \in F\} = \{a^i \mid \delta(q_0, a^i) \in F\} \quad (|K| < \infty)
\]

\[
J = \{a^i \mid m \leq i < m + p, q_i \in F''\} = \{a^i \mid m \leq i < m + p, \delta(q_0, a^i) \in F''\} \quad (|J| < \infty)
\]

Then $K, J \subseteq L(A) = L$ and $K \cup J = L \cap \{a^0, a^1, \ldots, a^{m+p-1}\}$. For $n \geq m + p$ we have

\[
a^n \in L(A) \iff \delta(q_0, a^n) \in F
\]

\[
\iff \delta(q_0, a^n) = q_i \text{ some } q_i \in F''
\]

\[
\iff q_n = q_i, \text{ some } q_i \in F''
\]

\[
\iff n = i + tp, \text{ for some } t \geq 1
\]

\[
\iff a^n = a^{i+tp} = a^i (a^p)^t, \text{ some } t \geq 1, a^i \in J
\]

\[
\iff a^n \in J(a^p)^+.
\]

We also have for $n \leq m + p - 1$

\[
a^n \in L(A) \iff a^n \in K \cup J.
\]

Hence $L(A) = K \cup J \cup J(a^p)^+ = K \cup J(a^p)^\ast$. \hfill \Box

3.4. Revision of Equivalence Relations

A relation \sim on a set A is an *equivalence relation* if

1. $a \sim a$ for all $a \in A$ (Reflexive),
2. $a \sim b \Rightarrow b \sim a$ for all $a, b \in A$ (Symmetric),
3. $a \sim b, b \sim c \Rightarrow a \sim c$ for all $a, b, c \in A$ (Transitive).

Then \sim-equivalence class (or just \sim-class) of $a \in A$ is the set $\{b \in A \mid a \sim b\}$. Often write $[a]$ for this set.

Note. $[a] = \{b \in A \mid a \sim b\} = \{b \in A \mid b \sim a\}$ as \sim is symmetric $a \in [a]$ as $a \sim a$ (reflexive).
FACTS:
(1) \([a] = [b] \iff [a] \cap [b] \neq \emptyset\), so the equivalence classes partition \(A\), i.e. cut up \(A\) into disjoint non-empty subsets.
(2) \([a] = [b] \iff b \in [a] \iff a \sim b (\iff [a] \cap [b] \neq \emptyset)\) or \([a] \neq [b] \iff b \notin [a] \iff a \neq b (\iff [a] \cap [b] = \emptyset)\).

4. Reduced DFAs

Given a DFA \(A = (A, Q, \delta, q_0, F)\) with \(L(A) = L\) we find a DFA \(\bar{A} = (\bar{A}, \bar{Q}, \bar{\delta}, \bar{q}_0, \bar{F})\) with \(L(\bar{A}) = L\) such that \(\bar{A}\) has the smallest number of states of any DFA accepting \(L\).

Two DFA’s, \(A\) and \(B\) (with the same alphabet), are equivalent if \(L(A) = L(B)\). We have remarked that any DFA is equivalent to an accessible DFA. We assume that all DFA’s are accesible.

Let \(A = (A, Q, \delta, q_0, F)\). Define \(\sim\) on \(Q\) by

\[q \sim q' \iff \forall w \in A^* (\delta(q, w) \in F \iff \delta(q', w) \in F)\).

Note. \(\sim\) is an equivalence relation on \(Q\).

Definition: An (accessable) DFA \(A\) is reduced if \(q \sim q' \Rightarrow q = q'\).

Theorem 4.1. Any DFA \(A\) is equivalent to a reduced DFA.

Proof. Let \(A = (A, Q, \delta, q_0, F)\) be an (accessible) DFA. \([q]\) is the \(\sim\)-class of \(q\) and \(\bar{Q} = \{[q] \mid q \in Q\}\). Define \(\bar{\delta} : \bar{Q} \times A \rightarrow \bar{Q}\) by \(\bar{\delta}([q], a) = [(q, a)]\).

(1) \(\bar{\delta}\) is well-defined.

Proof. We have that
\[
[q] = [q'] \Rightarrow q \sim q' \\
\Rightarrow \forall w \in A^*, \delta(q, w) \in F \iff \delta(q', w) \in F \\
\Rightarrow \forall a \in A, \forall w \in A^*, \delta(q, aw) \in F \iff \delta(q', aw) \in F. \\
\Rightarrow \forall a \in A, \forall w \in A^*, \delta(\delta(q, a), w) \in F \iff \delta(\delta(q', a), w) \in F \\
\iff \forall a \in A, \delta(q, a) \sim \delta(q', a) \\
\iff \forall a \in A, [\delta(q, a)] = [\delta(q', a)]
\]

Hence \(\bar{\delta}([q], a) = \bar{\delta}([q'], a)\), so \(\bar{\delta}\) is well-defined. \(\square\)

(2) For \(q \sim q', q \in F \iff \delta(q, \varepsilon) \in F \iff \delta(q', \varepsilon) \in F \iff q' \in F\). So, in \([q]\) either all states are final or none are final. We put \(\bar{F} = \{[q] \mid q \in F\}, \bar{q}_0 = [q_0]\). So, \(\bar{A} = (A, \bar{Q}, \bar{\delta}, \bar{q}_0, \bar{F})\) is a DFA.
(3) For any $w \in A^*$ we have $\bar{\delta}([q], w) = [\delta(q, w)]$. Then

$$\bar{\delta}([q], \varepsilon) = [q] = [\delta(q, \varepsilon)].$$

For $w \in A$, result is true by definition of $\bar{\delta}$. Suppose the result is true for all $w \in A^*$ with $|w| = n$. Then

$$\bar{\delta}([q], wa) = \bar{\delta}(\bar{\delta}([q], w), a) \quad \text{by definition of extended } \bar{\delta},$$

$$= \bar{\delta}(\delta(q, w), a) \quad \text{inductive assumption},$$

$$= [\delta(\delta(q, w), a)] \quad \text{definition of } \bar{\delta},$$

$$= [\delta(q, wa)] \quad \text{definition of extended } \delta.$$

(4) \bar{A} is reduced.

Proof. We have that

$$[q] \sim [q'] \iff \forall w \in A^*, \bar{\delta}([q], w) \in \bar{F} \iff \bar{\delta}([q'], w) \in \bar{F}$$

$$\iff \forall w \in A^*, [\delta(q, w)] \in \bar{F} \iff [\delta(q', w)] \in \bar{F}$$

$$\iff \forall w \in A^*, \delta(q, w) \in F \iff \delta(q', w) \in F$$

by the definition of \bar{F}

$$\iff q \sim q'$$

$$\iff [q] = [q']$$

and so \bar{A} is reduced. \qed

(5) \bar{A} is equivalent to A

$$w \in L(\bar{A}) \iff \delta(q_0, w) \in F,$$

$$\iff [(q_0, w)] \in \bar{F},$$

$$\iff \bar{\delta}([q_0], w) \in \bar{\delta},$$

by the definition of the extended $\bar{\delta}$

$$\iff w \in L(\bar{A}).$$

Hence we have $L(\bar{A}) = L(A)$. \qed

Definition: Let $A = (A, Q, \delta, q_0, F)$, $B = (A, P, \sigma, p_0, T)$ be DFAs. Then A is isomorphic to B if there exists a bijection $\theta : Q \rightarrow P$ such that $q_0 \theta = p_0$, $F \theta = T$ and

$$\delta(q, a) \theta = \sigma(q \theta, a) \quad \forall q \in Q, a \in A.$$
We write maps on the right of the their arguments, with the exception of the next state function. So, we write \(af \) instead of \(f(a) \).

Claim. If \(\mathcal{A} \) and \(\mathcal{B} \) are reduced and equivalent, then \(\mathcal{A} \) is isomorphic to \(\mathcal{B} \). (So, in theorem above \(\overline{\mathcal{A}} \) is the unique (up to isomorphism) reduced DFA equivalent to \(\mathcal{A} \).)

Proof. \(\mathcal{A} \) and \(\mathcal{B} \) are accessible. Define \(\theta : Q \to P \) by \(\delta(q_0, w)\theta = \sigma(p_0, w) \). Certainly \(\theta \) is everywhere defined and onto. Is \(\theta \) well-defined?

\begin{align*}
\delta(q_0, w) = \delta(q_0, w') & \iff \delta(q_0, w) \sim \delta(q_0, w') \quad \mathcal{A} \text{ is reduced}, \\
& \iff \forall v \in A^* \quad \delta(\delta(q_0, w), v) \in F \iff \delta(\delta(q_0, w'), v) \in F, \\
& \iff \forall v \in A^* \quad \delta(q_0, wv) \in F \iff \delta(q_0, w'v) \in F, \\
& \iff \forall v \in A^* \quad wv \in L(\mathcal{A}) \iff w'v \in L(\mathcal{A}), \\
& \iff \forall v \in A^* \quad wv \in L(\mathcal{B}) \iff w'v \in L(\mathcal{B}), \\
& \iff \forall v \in A^* \quad \sigma(p_0, wv) \in T \iff \sigma(p_0, w'v) \in T, \\
& \iff \forall v \in A^* \quad \sigma(\sigma(p_0, w), v) \in T \iff \sigma(\sigma(p_0, w'), v) \in T, \\
& \iff \sigma(p_0, w) \sim \sigma(p_0, w'), \\
& \iff \sigma(p_0, w) = \sigma(p_0, w'), \\
& \iff \delta(q_0, w)\theta = \delta(q_0, w')\theta.
\end{align*}

Now \(\Rightarrow \) gives us that \(\theta \) is well-defined and \(\Leftarrow \) gives \(\theta \) is 1:1. \(\square \)

Check: \(q_0\theta = p_0, \ F\theta = T \) and \(\delta(q, a)\theta = \sigma(q\theta, a) \) for all \(q \in Q, a \in A \).

Proposition. If \(L = L(\mathcal{A}) \) where \(\mathcal{A} \) is a DFA, then \(\overline{\mathcal{A}} \) has the smallest number of states of any DFA accepting \(L \).

Proof. If \(L = L(\mathcal{B}) \) for some DFA \(\mathcal{B} \), then there exists a reduced DFA \(\overline{\mathcal{B}} \) with \(L = L(\mathcal{A}) = L(\overline{\mathcal{A}}) = L(\mathcal{B}) = L(\overline{\mathcal{B}}) \). Since \(\overline{\mathcal{A}} \) and \(\overline{\mathcal{B}} \) are reduced then there exists a bijection \(\theta : Q_{\overline{\mathcal{A}}} \to Q_{\overline{\mathcal{B}}} \). Therefore we have

\[|Q_{\overline{\mathcal{A}}}| = |Q_{\overline{\mathcal{B}}}| \leq |Q_B| \.
\]

Given \(\mathcal{A} \) how do we fine \(\overline{\mathcal{A}} \)? We must calculate \(\sim \). We find a sequence \(\sim_0, \sim_1, \sim_2, \ldots \) of equivalence relations on \(Q \) such that there exists \(k \) with \(\sim_k = \sim \).

Let \(\mathcal{A} = (A, Q, \delta, q_0, F) \) and \(k \geq 0 \).

Definition: \(q \sim_k \iff \forall w \in A^*, \delta(q, w) \in F \iff \delta(q', w) \in F \) with \(|w| \leq k \). So \(q \sim_k q' \Rightarrow q \sim_{k-1} q' \Rightarrow \cdots \Rightarrow q \sim_0 q' \) and

\[q \sim q' \iff q \sim_k q' \text{ for all } k \geq 0 \]
FACTS:
(1) We have that,
\[q \sim_0 q' \iff \text{for all } w \in A^*, \delta(q, w) \in F \iff \delta(q', w) \in F \text{ where } |w| \leq 0 \]
i.e. \(q \sim_0 q' \Leftrightarrow q, q' \in F \) or \(q, q' \notin F \). So the \(\sim_0 \) classes are \(F \) and \(Q \setminus F \).
(2) \(q \sim_{k+1} q' \iff q \sim_k q' \) and for all \(a \in A \), \(\delta(q, a) \sim_k \delta(q', a) \).
So we can find \(\sim_0, \sim_1, \sim_2, \ldots \), in turn.

EXAMPLE 4.1.

We have that the \(\sim \) classes are

\[
\begin{array}{c|cc}
\sim & a & b \\
0 & 0 & 1 & 2 \\
1 & 4 & 5 \\
2 & 3 & 5 \\
3 & 5 & 5 \\
4 & 5 & 5 \\
5 & 5 & 5 \\
\end{array}
\]

\(\sim_0 \) classes: \(\{0, 1, 2, 5\} \quad \{3, 4\} \)
\(\sim_1 \) classes: \(\{0, 5\} \quad \{1, 2\} \quad \{3, 4\} \)
\(\sim_2 \) classes: \(\{0\} \quad \{5\} \quad \{1, 2\} \quad \{3, 4\} \)
\(\sim_3 \) classes: \(\{0\} \quad \{5\} \quad \{1, 2\} \quad \{3, 4\} \)

MORE FACTS:
(1) \(\sim_k = \sim_{k+1} \Rightarrow \sim_k = \sim_{k+1} = \sim_{k+2} \ldots \)
(2) there exists \(k \) such that \(\sim_k = \sim_{k+1} \)
(3) \(\sim_k = \sim_{k+1} \Rightarrow \sim_k = \sim \)
We note that (4) & (5) ⇒ there exists \(k \) such that \(\sim_k = \sim \). We calculate \(\sim_0, \sim_1, \ldots \) by finding a \(k \) such that \(\sim_k = \sim_{k+1} \) and then \(\sim = \sim_k \).

In our example we have

\[\sim_2 = \sim_3 \Rightarrow \sim = \sim_2. \]

The reduced DFA equivalent to our example has four states

\[[0] = \{0\}, \quad [5] = \{5\}, \quad [1] = \{1, 2\}, \quad [4] = \{3, 4\} \]

with initial state [0]. Unique final state [4]. Then we have \(\mathcal{A} \)

5. **Monoids and Transition Monoids**

5.1. **Monoids**

Definition: A monoid \(M \) is a set together with a binary operation (so \(M \) is closed under the operation) such that

(i) \((ab)c = a(bc)\) for all \(a, b, c \in M \),

(ii) there exists \(1 \in M \) such that \(1a = a = a1 \) for all \(a \in M \).

Example 5.1.

(1) Groups are monoids. However \(\mathbb{N} \) under \(\times \) is a monoid which is not a group.

(2) Let \(X \) be a set \(X \neq \emptyset \). \(T_X \) is the set of all functions \(X \to X \) and \(T_X \) is a monoid under \(\circ \) (usually omitted) with identity \(I_X \), called the full transformation monoid on \(X \).

New Convention: This applies to all functions except next state functions. If \(\alpha : U \to V \) is a function we write \(u\alpha \) for the image of \(u \in U \) under \(\alpha \) (instead of \(\alpha(u) \)). So, \(I_X : X \to X \) is defined by \(xI_X = x \) for all \(x \in X \). If \(\alpha : U \to V \) and \(\beta : V \to W \) then \((u\alpha)\beta \) is the
image of \(u \in U \) under first \(\alpha \) and then \(\beta \). Naturally, we write \((u\alpha)\beta = u(\alpha\beta)\), so \(\alpha\beta \) now means “do \(\alpha \), then do \(\beta \)“.

If \(X = \{1, 2, \ldots, n\} \) we write \(T_X \) for \(T \) and \(I_n \) for \(I \). We may use “two-row“ notation for elements of \(T \). If \(\alpha \in T_4 \) is given by

\[
1\alpha = 1 \quad 2\alpha = 1 \quad 3\alpha = 2 \quad 4\alpha = 4.
\]

We can write \(\alpha = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array} \right) \) and for example

\[
\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 3 \end{array} \right) \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 4 \end{array} \right) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{array} \right).
\]

Note that \(|T_n| = n^n \) because for each element in \(\{1, 2, \ldots, n\} \) there are \(n \) choices for it’s image under a map in \(T_n \). There are \(n \) elements and hence \(|T_n| = n^n \).

5.2. Constant Functions in \(T_X \)

\(x \in X \), \(c_x : X \rightarrow X \) is given by \(yc_x = x \) for all \(y \in X \) and is called the constant function on \(x \). For example

\[
c_1 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array} \right) \in T_4.
\]

Note that \(\alpha c_x = c_x \) for all \(\alpha \in T_X \). Since for all \(y \in X \) we have

\[
y(\alpha c_x) = (y\alpha)c_x = x = yc_x
\]

Also, \(c_x\alpha = c_{x\alpha} \) since for all \(y \in X \)

\[
y(c_x\alpha) = (yc_x)\alpha = x\alpha = yc_{x\alpha}
\]

Definition: Let \(M \) be a monoid and \(T \subseteq M \). Then \(T \) is a **submonoid** if

1. \(1 \in T \) and
2. \(a, b \in T \Rightarrow ab \in T \)
Definition: Let M be a monoid and $X \subseteq M$. \(\langle X \rangle = \{x_1x_2\ldots x_n \mid n \geq 0 \text{ and } x_i \in X\} \).

Notice that 1 (empty product) lies in \(\langle X \rangle \) and if \(x_1x_2\ldots x_n y_1y_2\ldots y_m \in \langle X \rangle \) (so \(x_i, y_i \in X \)) then

\[
(x_1x_2\ldots x_n)(y_1y_2\ldots y_m) = x_1x_2\ldots x_n y_1y_2\ldots y_m \in \langle X \rangle.
\]

So, \(\langle X \rangle \) is a submonoid of \(M \), the submonoid of \(M \) generated by \(X \). If \(M = \langle X \rangle \), we say \(M \) is generated by \(X \).

For example \(N = \langle P \rangle \), where \(P \) is the set of primes; \(A^* = \langle A \rangle \) under \(X \).

5.3. The Transition Monoid of a DFA

Let \(A = (A, Q, \delta, q_0, F) \) be a DFA. For each \(w \in A^* \) let \(\sigma_w \in T_Q \) be defined by

\[
q \sigma_w = \delta(q, w).
\]

Claim. \(\sigma_w \sigma_v = \sigma_{wv} \) for all \(w, v \in A^* \).

Proof. We have that

\[
q(\sigma_w \sigma_v) = (q \sigma_w) \sigma_v
= \delta(q, w) \sigma_v
= \delta(\delta(q, w), v)
= \delta(q, w) v
= q \sigma_{wv}.
\]

Therefore \(\sigma_w \sigma_v = \sigma_{wv} \). \(\square \)

Now we note that \(q \sigma_\varepsilon = \delta(q, \varepsilon) = q = qI_Q \) and therefore \(\sigma_\varepsilon = I_Q \). Therefore \(M(A) = \{\sigma_w \mid w \in A^*\} \) is a submonoid of \(T_Q \). Now \(M(A) \) is the transition monoid of the DFA \(A \). Note that the initial and final states do not matter for \(M(A) \).

Let \(w = a_1a_2\ldots a_n \in A^* \) where \(a_i \in A \). Then

\[
\sigma_w = \sigma_{a_1a_2\ldots a_n} = \sigma_{a_1} \sigma_{a_2} \ldots \sigma_{a_n}.
\]

Therefore \(M(A) = \langle \sigma_a \mid a \in A \rangle \). Now we note that

\[
|M(A)| \leq |T_Q| = |Q|^{|Q|} < \infty.
\]

Examples of Finding Transition Monoids

1. \(A = \{a, b\} \) and \(Q = \{1, 2\} \)
Calculate σ_a, σ_b – then calculate all products until we don’t obtain any new elements

\[
\begin{array}{c|ccc}
\sigma_a & 1 & 2 \\
\hline
1 & 2 & 2 \\
2 & 2 & 1 \\
\sigma_b & 2 & 1 \\
\end{array}
\]

Now we have

\[
\begin{align*}
\sigma_a &= c_2, \\
\sigma_a^2 &= \sigma_a \sigma_a = c_2 = \sigma_b = \sigma_b \sigma_a, \\
\sigma_b^2 &= \sigma_b \sigma_b = I_Q, \\
\sigma_a \sigma_b &= \sigma_{ab} = c_1.
\end{align*}
\]

Hence we have $M(\mathcal{A}) = \{I_Q, \sigma_b, c_2, c_1\}$, which will have multiplication table

\[
\begin{array}{c|cccc}
 & I & \sigma_b & c_2 & c_1 \\
\hline
I & I & \sigma_b & c_2 & c_1 \\
\sigma_b & \sigma_b & I & c_2 & c_1 \\
c_2 & c_2 & c_1 & c_2 & c_1 \\
c_1 & c_1 & c_2 & c_2 & c_1 \\
\end{array}
\]

(2) $A = \{a\}$ and $Q = \{1, 2, 3, 4, 5\}$. Now the STD of our DFA is

We have that $M(\mathcal{A}) = \langle \sigma_a \rangle = \{\sigma_a^n \mid n \geq 0\}$. Calculate $\sigma_a, \sigma_a^2 = \sigma_a^2, \sigma_a^3, \ldots$ So we have that $M(\mathcal{A}) = \{i, \sigma_a, \sigma_a^2, \sigma_a^3, \sigma_a^4\}$.

Note. We have that $T = \{\sigma_a^2, \sigma_a^3, \sigma_a^4\}$ is a 3 element subgroup of $M(\mathcal{A})$.

(3) $A = \{a, b\}$ and $Q = \{1, 2, 3\}$. The STD of our DFA is
We now have our table of transitions to be

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_a</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>σ_a^2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>σ_a^3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>σ_a^4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>σ_a^5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

We now have our table of transitions to be

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_a</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>σ_a^2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>σ_a^3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$\sigma_a\sigma_a^2$</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$\sigma_a\sigma_a^3$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus we have $M(A) = \{I, \sigma_a, \sigma_a^2, c_1, c_2, c_3\}$. This has multiplication table
5.4. Some Notation for Functions

Let \(\theta : A \to B \) be a function and \(R \subseteq A, S \subseteq B \). Then we define

\[
R \theta = \{ a \theta \mid a \in R \}
\]
\[
S \theta^{-1} = \{ a \in A \mid a \theta \in S \}
\]

where \(S \theta^{-1} \) is the inverse image of \(S \) under \(\theta \). The notation \(S \theta^{-1} \) does NOT imply the function \(\theta^{-1} \) exists.

Example 5.2. \(A = \{1, 2, 3\} \), \(B = \{a, b, c\} \) and \(\theta : A \to B \) given by

\[
1 \theta = b \quad 2 \theta = b \quad 3 \theta = a.
\]

It is clear to see that \(\theta \) is not a bijection and hence \(\theta^{-1} \) does not exist. Now we have

\[
\begin{align*}
(1, 2) \theta &= \{1 \theta, 2 \theta\} = \{b\} \\
\{1\} \theta &= \{b\} \\
\emptyset \theta &= \emptyset
\end{align*}
\]
\[
\begin{align*}
\{b\} \theta^{-1} &= \{1, 2\} = \{b, c\} \theta^{-1} \\
\{a\} \theta^{-1} &= \{3\} \\
\{c\} \theta^{-1} &= \emptyset \\
\emptyset \theta^{-1} &= \emptyset
\end{align*}
\]

Note. \((1, 2) \theta^{-1} = \{b\} \theta^{-1} = \{1, 2\} \) so we have \(\{1\} \theta \theta^{-1} \neq \{1\} \).

Let \(\theta : A \to B \), \(S_1, S_2 \subseteq A \) and \(R_1, R_2 \subseteq B \). Some facts:

1. \((S_1 \cup S_2) \theta^{-1} = S_1 \theta^{-1} \cup S_2 \theta^{-1} \),
2. \((R_1 \cap R_2) \theta = R_1 \theta \cap R_2 \theta \),
3. \((R_1 \cap R_2) \theta \subseteq R_1 \theta \cap R_2 \theta \), (induction may be strict)
4. \((S_1 \cap S_2) \theta^{-1} = S_1 \theta^{-1} \cap S_2 \theta^{-1} \).

Proof.

1. We have that
\[x \in (S_1 \cup S_2)\theta^{-1} \iff x\theta \in S_1 \cup S_2 \]
\[\iff x\theta \in S_1 \text{ or } x\theta \in S_2 \]
\[\iff x \in S_1\theta^{-1} \text{ or } x \in S_2\theta^{-1} \]
\[\iff x \in S_1\theta^{-1} \cup S_2\theta^{-1} \]

5.5. The Syntactic Monoid of a Language

Let \(L \) be a language over \(A \). For \(u \in A^* \) we have

\[c_L(u) = \{(w, z) \in A^* \times A^* \mid wuz \in L\} \]

the context of \(u \). Now define \(\sim_L \) on \(A^* \) by

\[u \sim_L v \text{ iff } c_L(u) = c_L(v). \]

It is clear that \(\sim_L \) is an equivalence relation on \(A^* \).

Lemma 5.1. \(u \sim_L v \) and \(u' \sim_L v' \) \(\Rightarrow \) \(uu' \sim_L vv' \).

Proof. Suppose \(u \sim_L v \) and \(u' \sim_L v' \). Then

\[(w, z) \in c_L(uu') \iff wuu'z \in L \]
\[\iff w(u'z) \in L \]
\[\iff (w, u'z) \in c_L(u) \]
\[\iff (w, u'z) \in c_L(v) \]
\[\iff wvu'z \in L \]
\[\iff (wu)v'u'z \in L \]
\[\iff (wu, z) \in c_L(u') \]
\[\iff (wu, z) \in c_L(v') \]
\[\iff wvu'z \in L \]
\[\iff (w, z) \in c_L(vv'). \]

Hence we have \(uu' \sim_L vv' \). \(\square \)

Now set \(M(L) = \{[w] \mid w \in A^*\} \) and define a ‘product’ on \(M(L) \) by \([u][v] = [uv]\). If \([u] = [u']\) and \([v] = [v']\) then \(u \sim_L u' \) and \(v \sim_L v' \), so by the Lemma above

\[uv \sim_L u'v' \]

and so \([uv] = [u'v']\). Hence our ‘product’ above is a well-defined binary operation on \(M(L) \).

Lemma 5.2. \(M(L) \) is a monoid under this binary operation.
Proof. For all $[u], [v], [w] \in M(L)$ then

$$[u][v][w] = [u][v][w] = [u][w][v] = [(uv)(vw) = (uv)[w] = ([u][v])[w].$$

Also we have that $[\varepsilon][u] = [\varepsilon][u] = [u] = [u][\varepsilon] = [u][\varepsilon]$ and hence $[\varepsilon]$ is the identity of $M(L)$. Thus $M(L)$ is a monoid. \square

Some terminology:

- \sim_L is the syntactic congruence of L
- $M(L)$ is the syntactic monoid of L.

Note. Suppose $u \in L$ and $u \sim_L v$. We have $(\varepsilon, \varepsilon) \in c_L(u) = c_L(v)$. We have that $v = \varepsilon v \varepsilon \Rightarrow v \in L$. Therefore L is a union of \sim_L-classes.

Calculation of $M(L)$

Example 5.3. Take $A = \{a, b\}$ and $L = A$. For $w \in A^*$ with $|w| > 1$, we have

$$c_L(w) = \emptyset,$$

$$c_L(\varepsilon) = \{(\varepsilon, a), (a, \varepsilon), (\varepsilon, b), (b, \varepsilon)\},$$

$$c_L(a) = \{(\varepsilon, \varepsilon)\} = c_L(b).$$

So, there exists three \sim_L-classes;

$$\{\varepsilon\} = [\varepsilon] = 1 \quad \{a, b\} = [a] = L \quad \{w \in A^* \mid |w| \geq 2\} = T.$$

So the multiplication table of our monoid is

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

because we have

$$LL = [a][a] = [a^2] = T,$$

$$LT = [a][a^2] = [a^3] = T.$$

Note T is zero for $M(L)$ – had we known we could have used 0 for T.

Example 5.4. $A = \{a, b\}$ and $L = \{ba, ab\}$. Now the contexts are
\[c_L(\varepsilon) = \{ (\varepsilon, ba), (b, a), (ba, \varepsilon), (\varepsilon, ab), (a, b), (ab, \varepsilon) \} \]
\[c_L(a) = \{ (b, \varepsilon), (\varepsilon, b) \} \]
\[c_L(b) = \{ (\varepsilon, a), (a, \varepsilon) \} \]
\[c_L(ba) = \{ (\varepsilon, \varepsilon) \} = c_L(ab) \]
\[c_L(a^2) = \emptyset = c_L(b^2) = c_L(w) \]

for all \(w \) with \(|w| \geq 3 \). So, there exists 5 \(\sim_L \)-classes:

\[[\varepsilon] = \{ \varepsilon \} = 1 \quad [a] = [a] = P \quad [b] = [b] = Q \quad [ab] = [ab, ba] = L \quad [a^2] = \{ a^2, b^2, w \mid |w| \geq 3 \} = 0. \]

So, \(M(L) = \{ 1, P, Q, L, 0 \} \) and has multiplication table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>P</th>
<th>Q</th>
<th>L</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>P</td>
<td>Q</td>
<td>L</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>P</td>
<td>0</td>
<td>L</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
<td>L</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We know the above because

\[P^2 = [a][a] = [a^2] = 0, \]
\[PQ = [a][b] = [ab] = L, \]
\[PL = [a^2b] = 0. \]

6. Recognition of a Monoid

Definition: Let \(M, N \) be monoids. Then \(\theta : M \to N \) is a \((monoid)\) morphism if

(i) \((ab)\theta = a\theta b\theta \),
(ii) \(1_M \theta = 1_N \).

Why is the free monoid called free?

Let \(A \) be an alphabet, \(M \) a monoid and \(\varphi : A \to M \) a function. Then there exists a unique morphism \(\theta : A^* \to M \) such that \(a\theta = a\varphi \) for all \(a \in A \).

Proof. Define \(\theta : A^* \to M \) by

\[\varepsilon \theta = 1 \]
\[(a_1 \ldots a_n)\theta = a_1 \varphi \ldots a_n \varphi \]
(a_i \in A). Clearly \(\theta \) is well-defined; it is easy to check that \(\theta \) is a morphism. For any \(a \in A \) we have \(a\theta = a\varphi \).

If \(\psi : A^* \to M \) is a morphism such that \(a\psi = a\varphi \) for all \(a \in A \), then \(\varepsilon\psi = 1 = \varepsilon\theta \). Now for all \(w = a_1a_2 \ldots a_n, a_i \in A, n \geq 1 \) we have

\[
\begin{align*}
 w\psi &= (a_1 \ldots a_n)\psi = a_1\psi \ldots a_n\psi \\
 &= a_1\varphi \ldots a_n\varphi \\
 &= (a_1 \ldots a_n)\theta \\
 &= w\theta.
\end{align*}
\]

Therefore \(\psi = \theta \) and \(\theta : A^* \to M \) is the unique morphism such that \(a\theta = a\varphi \) for all \(a \in A \). \(\square \)

Definition: Let \(L \subseteq A^* \) and let \(M \) be a monoid. Then \(L \) is **recognised** by \(M \) if there exists a morphism \(\theta : A^* \to M \) such that \(L = (L\theta)\theta^{-1} \).

Remark. We know \(L \subseteq (L\theta)\theta^{-1} \). For \(L = (L\theta)\theta^{-1} \), we need that \(w \in (L\theta)\theta^{-1} \Rightarrow w \in L \).

\[
\begin{align*}
 w\theta &\in L\theta \Rightarrow w \in L \\
 w\theta = v\theta, \text{ some } v \in L \Rightarrow w \in L.
\end{align*}
\]

Theorem 6.1. Let \(L \) be a language. Then \(L \) is recognised by \(M(L) \).

Proof. Define \(\nu_L : A^* \to M(L) \) by \(w\nu_L = [w] \), then \(\varepsilon\nu_L = [\varepsilon] \), which is the identity of \(M(L) \) and

\[
(wv)\nu_L = [wv] = [w][v] = w\nuLv\nu_L.
\]

Hence \(\nu_L \) is a morphism. Suppose \(w \in (L\nu_L)\nu_L^{-1} \). Then \(w\nu_L \in L\nu_L \), so \(w\nu_L = v\nu_L \) for some \(v \in L \). We have \([w] = [v] \) by definition of \(\nu_L \), hence \(w \sim_L v \). As \((\varepsilon, \varepsilon) \in c_L(v) \) we must have \((\varepsilon, \varepsilon) \in c_L(w) \) so that \(w \in L \). Hence \((L\nu_L)\nu_L^{-1} \subseteq L \) so that \((L\nu_L)\nu_L^{-1} = L \) and hence \(L \) is recognised by \(M(L) \). \(\square \)

Theorem 6.2. The following are equivalent for a language \(L \subseteq A^* \):

(i) \(M(L) \) is finite;
(ii) \(L \) is recognised by a finite monoid;
(iii) \(L \in \text{Rec} A^* \).

Proof. (i) \(\Rightarrow \) (ii) from the above.

(ii) \(\Rightarrow \) (iii): Let \(M \) be a finite monoid and \(\theta : A^* \to M \) a morphism such that \(L = (L\theta)\theta^{-1} \). Let \(\mathcal{A} = (A, M, \delta, 1_M, L\theta) \) where \(\delta(m, a) = m(a\theta) \). Check \(\delta(m, w) = m(w\theta) \) for all \(w \in A^* \). Then
\[w \in L(A) \iff \delta(1, w) \in L\theta, \]
\[\iff 1(w\theta) \in L\theta, \]
\[\iff w\theta \in L\theta, \]
\[\iff w \in (L\theta)\theta^{-1}, \]
\[\iff w \in L \text{ as } (L\theta)\theta^{-1}L. \]

Hence \(L(A) = L \) so \(L \) is recognisable by \(A \).

(iii) \(\Rightarrow \) (i): If \(L \in \text{Rec } A^* \) then \(L = L(A) \) for some reduced (accessible) DFA \(A = (A, Q, \delta, q_0, F) \).

Claim. We claim that for \(u, v \in A^* \), \(u \sim_L v \iff \sigma_u = \sigma_v \). So, the number of \(\sim_L \)-classes \(= |M(A)| \leq |T_Q| \leq |Q|^{[Q]} < \infty \).

Proof. We have that

\[u \sim_L v \iff c_L(u) = c_L(v), \]

\[\iff ((w, z) \in c_L(u) \iff (w, z) \in c_L(v)), \]

\[\iff (wuz \in L \iff wvz \in L \forall w, z \in A^*), \]

\[\iff \forall w, z \in A^*, \]

\[\delta(q_0, wuz) \in F \iff \delta(q_0, wvz) \in F \]

\[\iff \forall q \in Q \forall z \in A^*, \]

\[\delta(\delta(q_0, w), uz) \in F \iff \delta(\delta(q_0, w), vz) \in F \]

\[\iff \forall q \in Q \forall z \in A^*, \]

\[\delta(q, uz) \in F \iff \delta(q, vz) \in F \]

\[\iff \forall q \in Q \forall z \in A^*, \]

\[\delta(\delta(q, u), z) \in F \iff \delta(\delta(q, v), z) \in F \]

\[\iff \forall q \in Q, \delta(q, u) \sim \delta(q, v) \]

\[\iff \forall q \in Q, \delta(q, u) = \delta(q, v) \]

\[\iff \forall q \in Q, q\sigma_u = q\sigma_v \]

\[\iff \sigma_u = \sigma_v \] \(\Box \)

Hence all statements are equivalent. \(\Box \)

We have now proved the following

Theorem 6.3. Let \(L \) be a language over \(A^* \). The following are equivalent;

(i) \(L \) is recognisable \((L \in \text{Rec } A^*; \ L = L(A) \text{ for some DFA } A) \);

(ii) \(L = L(A) \) for some NDA \(A \);
(iii) L is rational ($L \in \text{Rat} A^*$);
(iv) L is recognised by a finite monoid M (i.e. there exists a morphism $\theta : A^* \to M$ such that $L = (L\theta)\theta^{-1}$);
(v) $M(L)$ is finite.

Common terminology for a language satisfying any of these equivalent conditions is regular.

Let $L \in \text{Rec} A^*$; we know that $M(L)$ is finite. How do we calculate it? Either directly by finding contexts; or we find a DFA \mathcal{A} with $L = L(\mathcal{A})$, reduce \mathcal{A} to \mathcal{A}' with $L = L(\mathcal{A}')$ and find $M(\mathcal{A}')$, then use the following.

Proposition. If $L = L(\mathcal{A})$ for a reduced DFA \mathcal{A}, then $M(L) = M(\mathcal{A})$, i.e. there exists a bijective morphism (an isomorphism) $\theta : M(L) \to M(\mathcal{A})$.

Proof. We have

$$M(L) = \{[u] \mid u \in A^*\} \text{ where } u \sim_L v \iff c_L(u) = c_L(v),$$

$$M(\mathcal{A}) = \{\sigma_u \mid u \in A^*\} \text{ where } q\sigma_u = \delta(q, u).$$

From an earlier result, $\theta : M(L) \to M(\mathcal{A})$ given by $[u]\theta = \sigma_u$ is a bijection. Let $[u], [v] \in M(L)$. Then

$$([u][v])\theta = [uv]\theta = \sigma_{uv} = \sigma_u\sigma_v = [u]\theta[v]\theta.$$

The identity of $M(L)$ is $[\varepsilon]$ and

$$[\varepsilon]\theta = \sigma_\varepsilon = I_Q \quad \text{(identity of } M(\mathcal{A})).$$

Therefore θ is a morphism and hence an isomorphism as required. \square

7. How do Monoids help us?

Let $L \subseteq A^*$, $w \in A^*$.

Definition: $w^{-1}L = \{v \in A^* \mid vw \in L\}$.

Lemma 7.1. $L \in \text{Rec} A^* \Rightarrow w^{-1}L \in \text{Rec} A^*$ for any $w \in A^*$.

Proof. $L \in \text{Rec} A^* \Rightarrow L$ is recognised by a finite monoid M. Hence there exists a morphism $\theta : A^* \to M$ such that

$$L = (L\theta)\theta^{-1}$$

We show $(w^{-1}L)\theta^{-1} = w^{-1}L$. We know

$$w^{-1}L \subseteq ((w^{-1}L)\theta)\theta^{-1}.$$

Now
Recall that a language L.

Note we can replace (ii) above with A.

Then $(wv)\theta = w\theta v\theta = w\theta x\theta = (wx)\theta \in L\theta \Rightarrow wv \in (L\theta)\theta^{-1} = L$. Hence $v \in w^{-1}L$ and so $(w^{-1}L)\theta^{-1} \subseteq w^{-1}L$ as required. \hfill \Box

RECALL: We needed that

$$L = \{ a^n b^p \mid n \geq 1, p \text{ prime} \} \not\subseteq \text{Rec } A^*.$$

We argued that $K = \{ a^n b^p \mid n \geq 0, p \text{ prime} \} \not\subseteq \text{Rec } A^*$. We have that $u \in a^{-1}L \iff au \in L \iff u \in K$. Hence $a^{-1}L = K$. If $L \in \text{Rec } A^*$, then we would have $a^{-1}L \in \text{Rec } A^*$, i.e. $K \in \text{Rec } A^*$ – a contradiction. Hence $L \not\subseteq \text{Rec } A^*$ as required.

Lemma 7.2. $L, K \in \text{Rec } A^* \Rightarrow L \cap K \in \text{Rec } A^*$.

Proof. There exists finite monoids M, N and morphisms $\theta : A^* \rightarrow M$ and $\psi : A^* \rightarrow N$ such that $L = (L\theta)\theta^{-1}$, $K = (K\psi)\psi^{-1}$. Now we have that $M \times N$ is a finite monoid under

$$(m, n)(m', n') = (mm', nn')$$

with identity $(1_M, 1_N)$. Define $\varphi : A^* \rightarrow M \times N$ by $w\varphi = (w\theta, w\psi)$. Check φ is a morphism.

We know $L \cap K \subseteq ((L \cap K)\varphi)\varphi^{-1}$. Let $w \in ((L \cap K)\varphi)\varphi^{-1}$. Then $w\varphi \in (L \cap K)\varphi$, so there exists $u \in L \cap K$ with $w\varphi = u\varphi$. Hence $(w\theta, w\psi) = (u\theta, u\psi)$, so

$$w\theta = u\theta \quad \text{and} \quad w\psi = u\psi.$$

As $u \in K$, $w \in (L\theta)\theta^{-1} = L$ and as $u \in K$, $w \in (K\psi)\psi^{-1} = K$. Hence $w \in L \cap K$ so that $((L \cap K)\varphi)\varphi^{-1} \subseteq L \cap K$. Hence $L \cap K = ((L \cap K)\varphi)\varphi^{-1}$ and $L \cap K$ is recognisable by $M \times N$, hence $L \cap K \in \text{Rec } A^*$. \hfill \Box

8. Schützenberger's Theorem

Recall that a language $L \subseteq A^*$ is rational if

(i) L is finite or
(ii) L can be obtained from finite subsets of A^* by applying rational operations (\cup, product, star) a finite number of times.

Note we can replace (ii) above with

(ii)' L can be obtained from subsets of A^* by applying \cup, \cap, \cdot, product and star a finite number of times (as Rat $A^* = \text{Rec } A^*$ it is closed under \cap and \cdot).

Definition: $L \subseteq A^*$ is star-free if

(1) L is finite or
(2) L can be obtained from finite languages by applying product and the boolean operations of \cup, \cap, c a finite number of times.

We have that if L is star-free then $L \in \text{Rec} A^*$ (as $\text{Rec} A^*$ contains the finite languages and is closed under Boolean operations and product). L star-free $\Rightarrow L \in \text{Rat} A^*$ (by Kleene’s Theorem).

Example 8.1.

(a) $\{ab, a, bab\}, \emptyset, \{\varepsilon\}$ are finite, hence star-free.

(b) $\{ab, a\}^c\{ba, aba\} \cup (\{aa\}^c \cap \{bb\}^c)$ is star-free.

(c) $A^* = \emptyset^c$ so A^* is star-free.

(d) Let $A = \{a, b, c\}$ then

$$\{a\}^* = (A^*bA^* \cup A^*cA^*)^c = (\emptyset^c b \emptyset^c \cup \emptyset^c c \emptyset^c)^c$$

is star-free.

(e) $L = \{x \in A^* \mid |x|_a \geq 1\} = A^*aA^* = \emptyset^c a \emptyset^c$ is star-free.

(f) $(ab)^* = (bA^* \cup A^*a \cup A^*aaA^* \cup A^*bbA^*)^c$ is star-free.

(g) $(aa)^*$ is not star-free.

Definition: Let M be a monoid and let $G \subseteq M$ then G is a subgroup of M if

1. G is closed $a, b \in G \Rightarrow ab \in G$;
2. there exists $e \in G$ such that $ea = a = ae$ for all $a \in G$;
3. for all $a \in G$ there exists $b \in G$ such that $ab = e = ba$.

i.e. G is a group under the restriction of the binary operation on M to the subset G.

Definition: $e \in M$ is idempotent if $e = e^2$ then we have $E(M)$ is the set of idempotents of M.

Example 8.2.

(i) $e \in E(M) \Rightarrow \{e\}$ is a subgroup, a trivial subgroup with identity e.

(ii) S_X is a subgroup of T_X.

(iii) $\text{GL}_n(\mathbb{R})$ is a subgroup of $M_n(\mathbb{R})$.

(iv) We have multiplication table

\[
\begin{array}{ccc|c}
I & \alpha & 0 \\
\hline
I & I & \alpha \\
\alpha & \alpha & I \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\{0\}, \{I\} are subgroups and \{I, \alpha\} is a subgroup.

(v) From the example of finding $M(\mathcal{A})$ number 2
Let $T = \{\sigma_a^2, \sigma_a^3, \sigma_a^4\}$. By inspection T is closed, σ_a^3 is the identity and $(\sigma_a^3)^2 = \sigma_a^3$, σ_a^2 and σ_a^4 are mutually inverse. Now

$$\sigma_a^2 \sigma_a^4 = \sigma_a^3 = \sigma_a^4 \sigma_a^2.$$

So T is a subgroup of $M(A)$.

Definition: A finite monoid M is *aperiodic* if all of its subgroups are trivial.

Theorem 8.1 (Schützenbergers Theorem). A language L is star-free $\iff M(L)$ is finite and aperiodic.

Proof. No proof in this course. □

Example 8.3. $L = (aa)^* \subseteq \{a, b\}^*$ with DFA

![DFA Diagram](attachment:dfa.png)

Now we have that $L(A) = L$. The \sim-classes are

\sim_0 -classes: $\{0\}, \{1, 2\}$,

\sim_1 -classes: $\{0\}, \{1\}, \{2\}$.

Hence $\sim = \sim_1$ and the \sim-classes are $\{0\}, \{1\}, \{2\}$ and so A is reduced. We have that $M(L) \cong M(A)$, clearly $M(L)$ is finite. The transition table for this is

$$
\begin{array}{c|ccc}
\sigma_a & 0 & 1 & 2 \\
\sigma_a^2 & 1 & 0 & 2 \\
\sigma_b & 2 & 2 & 2 \\
\sigma_a^3 & 0 & 1 & 2 \\
\end{array}
$$
Hence $M(\mathcal{A}) = \{I, \sigma_a, c_2\}$. Now $M(\mathcal{A})$ has table

\[
\begin{array}{ccc}
 I & \sigma_a & c_2 \\
 I & \sigma_b & c_2 \\
 \sigma_a & I & c_2 \\
 c_2 & c_2 & c_2 \\
\end{array}
\]

Now $\{I, \sigma_a\}$ is a subgroup. So $M(L)$ is not aperiodic hence L is not star-free by Schützenbergers' theorem.