1. (5 points) What is a basis of a vector space \(V \)?

 a linearly independent spanning set/list of \(V \)

2. (10 points) Let \(V = \{ p \in \mathcal{P}_2(F) : p(0) = 0 \} \), where \(\mathcal{P}_2(F) \) denotes the vector space of all polynomials with coefficients in \(F \) and degree at most 2.

 (a) Show that \(V \) is a subspace of \(\mathcal{P}_2(F) \). Show all your work.

 Assume \(\forall p, q \in V \)

 \(\Rightarrow (p + q)(0) = p(0) + q(0) = 0 \)

 \(\Rightarrow p + q \in V \)

 Assume \(\forall p \in V, \forall a \in F \)

 \(\Rightarrow ap(0) = a(p(0)) = a \cdot 0 = 0 \Rightarrow ap \in V \)

 (b) Verify that \(t^2, t - t^2 \) is a basis of \(V \). Show all your work.

 1) \(at^2 + b(t - t^2) = bt + (a - b)t^2 = 0 \)

 \(\Rightarrow a - b = 0 \Rightarrow \{ a = 0 \} \)

 \(\Rightarrow t^2, t - t^2 \) lin indep

 2) \(\forall p = a_0 + a_1 t + a_2 t^2 \in V \)

 \(p(0) = a_0 = 0 \Rightarrow p = a_1 t + a_2 t^2 = a_1(t - t^2) + (a_2 + a_1) t^2 \in \text{Span}\{t, t - t^2\} \Rightarrow \text{Span}\{t, t - t^2\} = V \)

 (c) Is \(t + 2t^2, 3t + 4t^2, 5t + 6t^2 \) a basis of \(V \)? Why? Show all your work.

 No, by (b), \(V \) has a spanning list of length 2

 \(\Rightarrow t + 2t^2, 3t + 4t^2, 5t + 6t^2 \) cannot be lin indep.

 * Alternatively, use the fact that the length of a basis of \(V = \text{dim} V = \frac{1}{2} \)