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Multivariate Distributions

Many of the facts about bivariate distributions have straightforward generalizations to
the general multivariate case.

For a d-dimensional discrete random variable X = (X1,X2, . . . ,Xd), take x ∈ Rd , we
have the probability mass function fX (x) = P{X = x}.

• For all x, fX (x) ≥ 0 and
∑

x fX (x) = 1.

• P{X ∈ B} =
∑

x∈B fX (x) and Eg(X ) =
∑

x g(x)fX (x)

• For Y = (Y1,Y2, . . . ,Yc) we have joint mass function
fX ,Y (x, y) = P{X = x,Y = y}

• marginal mass function fX (x) =
∑

y fX ,Y (x, y),

• conditional mass function fY |X (y|x) = P{Y = y|X = x} = fX ,Y (x, y)/fX (x), and

• conditional expectation E [g(X ,Y )|X = x] =
∑

y g(x, y)fY |X (y|x).
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Multivariate Distributions

For a d-dimensional continuous random variable X = (X1,X2, . . . ,Xd), take x ∈ Rd ,
we have the probability density function fX (x),

• For all x, fX (x) ≥ 0 and
∫
Rd fX (x) dx. = 1,

• P{X ∈ B} =
∫
B fX (x) dx and Eg(X ) =

∫
Rd g(x)fX (x) dx,

• For Y = (Y1,Y2, . . . ,Yc) we have joint density function fX ,Y (x, y),

• marginal density function fX (x) =
∫
Rc fX ,Y (x, y) dy,

• conditional density function fY |X (y|x) = fX ,Y (x, y)/fX (x), and

• conditional expectation E [g(X ,Y )|X = x] =
∫
Rc g(x, y)fY |X (y|x).
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Transformations
For X1,X2, . . . ,Xd are continuous random variables with state space S ⊂ Rd

g : S → Rd , a one-to-one mapping, write Y = g(X ).

Above the n-cube from y to (y + ∆y), we have probability

fY (y)(∆y)d ≈ P{y < Y ≤ y + ∆y}

For x = g−1(y), this probability is equal to the area of image of the n-cube from y to
y + ∆y under the map g−1 times the density fX (x).

g−1(y + ∆y) ≈ g−1(y) +∇g−1(y) ·∆y = x + J(y) ·∆y,

where J(y) denote the Jacobian matrix for x = g−1(y). The ij-th entry in this matrix is

Jij(y) =
∂xi
∂yj

.
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Transformations

The goal is to show that the density is

fY (y) = fX (g−1(y))| det(J(y))|.

The image of the n unit cube under the Jacobian is an n-parallelepiped. Thus, to
guarantee that this formula holds, we must show that this volume is equal to
| det(J(y))|. To this end, write an n × n matrix as as n column vectors

V = (v1| · · · |vn).

To show this equality, we use the fact that the determinant is the unique n-linear
alternating form on n × n matrices that maps the identity matrix to one.
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Transformations

• For vi = ei , the unit cube volume and the identity matrix determinant are both
one.

• (alternating) If two columns are swapped, then the determinant is multipied by
−1 and the volume remains the same.

• (linearity) Multiplying a column by a non-zero constant c results in change in the
determinant by a factor of c and the volume by a factor |c |

• (alternating) If two columns are identical, then the vectors in V are linearly
dependent and the n-volume is 0. Swapping the columns returns the same matrix,
thus detV = − detV. Thus detV = 0.
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Transformations

• (linearity) Let Ṽ be the matrix resulting from the j-th column of V replaced by a
constant times a column i 6= j . Then by the multilinearity of determinants,

det(Ṽ) = detV + det(Ṽ − V) = detV + 0
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and the volume of the n-parallelepiped remains the same.

• Thus, each of the three elementary column operations maintains equality between
the volume and the absolute value of the determinant.

• Every matrix can be obtained from the identity matrix through these operations.
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Multivariate Distributions Covariance Covariance

Multivariate Normal Random Variables

Again, for A a one-to-one linear transformation and Y = AX , then

fY (y) = fX (A−1y)| det(A−1)| =
1

| det(A)|
fX (A−1y).

For Z1, . . . ,Zn independent N(0, 1), the density

fZ (z) =
1√
2π

exp

(
−z21

2

)
· · · 1√

2π
exp−

(
z2n
2

)
=

1

(2π)n/2
exp

(
−z21 + · · ·+ z2n

2

)
=

1

(2π)n/2
exp

(
−zT · z

2

)
Any random vector Y = AZ obtained as the linear transformation is called a centered
multivariate normal random variable. (We could add a constant vector to Y .)
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Multivariate Distributions Covariance Covariance

Multivariate Normal Random Variables

The density

fY (y) =
1

det(A)
fX (A−1y)

=
1

| det(A)|(2π)n/2
exp

(
−(A−1y)T · (A−1y)
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)
=
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| det(A)|(2π)n/2
exp

(
−yT (A−1)T · (A−1y)
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)
=
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| det(A)|(2π)n/2
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(
−yT ((AT )−1 · A−1)y)
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)
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(
−yT (AAT )−1y
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Multivariate Distributions Covariance Covariance

Sums of Independent Random Variable
• Random variables X1,X2, . . . ,Xd are independent provided that for any choice of

sets B1,B2, . . . ,Bd ,

P{X1 ∈ B1,X2 ∈ B2, . . . ,Xd ∈ Bd} = P{X1 ∈ B1}P{X2 ∈ B2} · · ·P{Xd ∈ Bd}.
For independent random variables

• For either mass functions or density functions, the joint mass or density function is
the product of the one-dimensional marginals.

fX (x) = fX1(x1)fX2(x2) · · · fXd
(xd).

• The expectation of a product of functions of the random variables is the product
of expectations

E [g1(X1)g2(X2) · · · gd(Xd)] = E [g1(X1)]E [g2(X2)] · · ·E [gd(Xd)]

provided each of these expectations exist.
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Multivariate Distributions Covariance Covariance

Sums of Independent Random Variable

• For non-negative integer-valued variables, the probability generating function of
the sum is the product of one-dimensional probability generating functions.

ρX1+X2+···+Xd
(z) = ρX1(z)ρX2(z) · · · ρXd

(z).
• For any random variables, the mass or density function of the sum is the

convolution of one-dimensional probability masses or densities, respectively.

fX1+X2+···+Xd
(x) = fX1(x) ∗ fX2(x) ∗ · · · ∗ fXd

(x).
• For any random variables, the moment generating function of the sum is the

product of one-dimensional probability generating functions.

MX1+X2+···+Xd
(t) = MX1(t)MX2(t) · · ·MXd

(t).
• For any random variables, the cumulant generating function of the sum is the sum

of one-dimensional cumulant generating functions.

KX1+X2+···+Xd
(t) = KX1(t) + KX2(t) + · · ·+ KXd

(t).
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convolution of one-dimensional probability masses or densities, respectively.

fX1+X2+···+Xd
(x) = fX1(x) ∗ fX2(x) ∗ · · · ∗ fXd

(x).
• For any random variables, the moment generating function of the sum is the

product of one-dimensional probability generating functions.

MX1+X2+···+Xd
(t) = MX1(t)MX2(t) · · ·MXd

(t).
• For any random variables, the cumulant generating function of the sum is the sum

of one-dimensional cumulant generating functions.

KX1+X2+···+Xd
(t) = KX1(t) + KX2(t) + · · ·+ KXd

(t).

12 / 21



Multivariate Distributions Covariance Covariance

Sums of Independent Random Variable

• For non-negative integer-valued variables, the probability generating function of
the sum is the product of one-dimensional probability generating functions.

ρX1+X2+···+Xd
(z) = ρX1(z)ρX2(z) · · · ρXd

(z).
• For any random variables, the mass or density function of the sum is the

convolution of one-dimensional probability masses or densities, respectively.

fX1+X2+···+Xd
(x) = fX1(x) ∗ fX2(x) ∗ · · · ∗ fXd

(x).
• For any random variables, the moment generating function of the sum is the

product of one-dimensional probability generating functions.

MX1+X2+···+Xd
(t) = MX1(t)MX2(t) · · ·MXd

(t).

• For any random variables, the cumulant generating function of the sum is the sum
of one-dimensional cumulant generating functions.

KX1+X2+···+Xd
(t) = KX1(t) + KX2(t) + · · ·+ KXd

(t).

12 / 21



Multivariate Distributions Covariance Covariance

Sums of Independent Random Variable

• For non-negative integer-valued variables, the probability generating function of
the sum is the product of one-dimensional probability generating functions.

ρX1+X2+···+Xd
(z) = ρX1(z)ρX2(z) · · · ρXd

(z).
• For any random variables, the mass or density function of the sum is the

convolution of one-dimensional probability masses or densities, respectively.

fX1+X2+···+Xd
(x) = fX1(x) ∗ fX2(x) ∗ · · · ∗ fXd

(x).
• For any random variables, the moment generating function of the sum is the

product of one-dimensional probability generating functions.

MX1+X2+···+Xd
(t) = MX1(t)MX2(t) · · ·MXd

(t).
• For any random variables, the cumulant generating function of the sum is the sum

of one-dimensional cumulant generating functions.

KX1+X2+···+Xd
(t) = KX1(t) + KX2(t) + · · ·+ KXd

(t).

12 / 21



Multivariate Distributions Covariance Covariance

Sums of Independent Random Variable

• For non-negative integer-valued variables, the probability generating function of
the sum is the product of one-dimensional probability generating functions.

ρX1+X2+···+Xd
(z) = ρX1(z)ρX2(z) · · · ρXd

(z).
• For any random variables, the mass or density function of the sum is the

convolution of one-dimensional probability masses or densities, respectively.

fX1+X2+···+Xd
(x) = fX1(x) ∗ fX2(x) ∗ · · · ∗ fXd

(x).
• For any random variables, the moment generating function of the sum is the

product of one-dimensional probability generating functions.

MX1+X2+···+Xd
(t) = MX1(t)MX2(t) · · ·MXd

(t).
• For any random variables, the cumulant generating function of the sum is the sum

of one-dimensional cumulant generating functions.

KX1+X2+···+Xd
(t) = KX1(t) + KX2(t) + · · ·+ KXd

(t).

12 / 21



Multivariate Distributions Covariance Covariance

Covariance
Here, we shall assume that the random variables under consideration have positive and
finite variance.

One simple way to assess the relationship between two random variables X1 and X2

with respective means µ1 and µ2 is to compute their covariance.

Cov(X1,X2) = E [(X1 − µ1)(X2 − µ2)]

= E [X1X2]− µ2EX1 − µ1EX2 + µ1µ2

= E [X1X2]− µ1µ2

Exercise. If X1 and X2 are independent then Cov(X1,X2) = 0

E [(X1 − µ1)(X2 − µ2)] = E [X1 − µ1]E [X2 − µ2] = 0 · 0 = 0.
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Multivariate Distributions Covariance Covariance

Covariance
• A positive covariance means that the terms (X1 − µ1)(X2 − µ2) in the sum are

more likely to be positive than negative. This occurs whenever the X1 and X2

variables are more often both above or below the mean in tandem than not.

• A negative covariance means that the (X1 − µ1)(X2 − µ2) in the expectation are
more likely to be negative than positive. This occurs when one of the variables is
above its mean, the other is more often below.

Example. For Z1,Z2, bivariate standard normals,

Cov(Z1,Z2) = E [Z1Z2] = E [E [Z1Z2|Z1]] = E [Z1E [Z2|Z1]] = E [ρZ 2
1 ] = ρ

For X1,X2, . . . ,X2 independent, common mean µ, variance σ2 and sum S ,

Cov(Xi ,S) = E [XiS ]− nµ2 = E [E [XiS |S ]]− nµ2 = E [SE [Xi |S ]]− nµ2 =
1

n
ES2 − nµ2

=
1

n
(Var(S) + (ES)2)− nµ2 =

1

n
(nσ2 + (nµ)2)− nµ2 = σ2
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Multivariate Distributions Covariance Covariance

Covariance
Example. For the joint density example,

EX1X2 =
4

5
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Multivariate Distributions Covariance Covariance

Correlation
Covariance fails to take into account the scale of the measurements - larger values lead
to larger covariance.

Thus, we define the correlation to be the covariance of the
standardized version of the random variables.

ρX1,X2 = E

[(
X1 − µ1
σ1

)(
X2 − µ2
σ2

)]
=

Cov(X1,X2)

σ1σ2
.

In the example,

σ21 = σ22 =
2

5

∫ 1

0
x2(3x + 1) dx −

(
3

5

)2

=
2

5
· 13

12
− 9

25
=

11

150
.

and

ρX1,X2 =
−1/225

11/150
= − 2

33
= −0.06.
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and

ρX1,X2 =
−1/225

11/150
= − 2

33
= −0.06.
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Multivariate Distributions Covariance Covariance

Covariance
Exercise. Cov(a1 + b1X1, a2 + b2X2) = b1b2Cov(X1,X2)

Cov(a1 + b1X1, a2 + b2X2) = E [((a1 + b1X1)− (a1 + b1µ1))((a2 + b2X2)− (a2 + b2µ2))]

= E [(b1(X1 − µ1))(b2(X2 − µ2))]

= b1b2E [(X1 − µ1)(X2 − µ2) = b1b2Cov(X1,X2)

Continuing, note that Cov(Xi ,Xi ) = Var(Xi )

Var(b1X1 + b2X2) = E [((b1X1 − b1µ1) + (b2X2 − b2µ2))2]

= E [((b1X1 − b1µ1)2] + 2E [(b1X1 − b1µ1)(b2X2 − b2µ2))]

+E [(b2X2 − b2µ2)2]

= b21Var(X1) + 2b1b2Cov(X1,X2) + b22Var(X2).
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Multivariate Distributions Covariance Covariance

Covariance

In particular,
0 ≤ σ2X1+cX2

= σ21 + 2cρX1,X2σ1σ2 + σ22c
2.

By considering the quadratic formula, we have that the discriminate

0 ≥ (2ρX1,X2σ1σ2)2 − 4σ21σ
2
2 = (ρ2X1,X2

− 1)4σ21σ
2
2 or ρ2X1,X2

≤ 1.

Consequently, −1 ≤ ρX1,X2 ≤ 1.

When we have |ρX1,X2 | = 1, we also have for some value of c that

σ2X1+cX2
= 0.

In this case, X1 + cX2 is a constant random variable and X1 and X2 are linearly related.
In this case, the sign of ρX1,X2 depends on the sign of the linear relationship.
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Multivariate Distributions Covariance Covariance

Covariance

For the case c = 1, the variance σX1+X2 ,

we have

σ2X1+X2
=

= σ21 + σ22 + 2ρσ1σ2.

Notice the analogy between this formula and the law of
cosines: c2 = a2 + b2 − 2ab cos θ.

If the two observations are uncorrelated, we have the
Pythagorean identity σ2X1+X2

= σ2X1
+ σ2X2

-1 0 1 2 3 4 5 6

0
2

4
6

-2

-2

σX1

σX1+X2
σX2

θ

Figure: For the law of cosines, let
a = σX1 , b = σX2 , σX1+X2 and
r = − cos θMore generally, for Xi , i = 1, . . . , n,

Var

(
n∑

i=1

biXi

)
=

n∑
i=1

n∑
j=1

bibjCov(Xi ,Xj)
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Multivariate Distributions Covariance Covariance

Hypergeometric Random Variables
Consider an urn with m white balls and n black balls. Remove k

and set

Xi =

{
0 if the i-th ball is black,
1 if the i-th ball is white.

Xi ∼ Ber( m
m+n ). Thus, EXi = m

m+n and Var(Xi ) = mn
(m+n)2

. For i 6= j ,

E [XiXj ] = P{Xi = 1,Xj = 1} = P{Xi = 1|Xj = 1}P{Xj = 1} =
m − 1

m + n − 1
· m

m + n
.

Cov(Xi ,Xj) =
m(m − 1)

(m + n)(m + n − 1)
−
(

m

m + n

)2

=
m

m + n

(
m − 1

m + n − 1
− m

m + n

)
=

m

m + n

(
−n

(m + n)(m + n − 1)

)
=

−mn

(m + n)2(m + n − 1)
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Multivariate Distributions Covariance Covariance

Hypergeometric Random Variables
The correlation

ρXi ,Xj

=
Cov(Xi ,Xj)

Var(Xi )
=

−mn

(m + n)2(m + n − 1)

/ mn

(m + n)2
= − 1

m + n − 1

Let X = X1 + X2 + · · ·+ Xk denote the number of white balls. Then,

Var(X ) =
k∑

i=1

k∑
j=1

Cov(Xi ,Xj) =
k∑

i=1

Var(Xi ) +
k∑

i=1

∑
j 6=i

Cov(Xi ,Xj)

= k
mn

(m + n)2
+ k(k − 1)

(
−mn

(m + n)2(m + n − 1)

)
= k

mn

(m + n)2

(
1− k − 1

m + n − 1

)
= kp(1− p)

N − k

N − 1

where N = m + n is the total number of balls and p = m/(m + n) is the probability
that a white ball is chosen.
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